| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
⊢ ( 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵 ) ) |
| 2 |
|
simpr |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord 𝐵 ) |
| 3 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
| 4 |
3
|
adantlr |
⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
| 5 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵 ) ) |
| 6 |
2 4 5
|
syl2an2r |
⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵 ) ) |
| 7 |
6
|
bicomd |
⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ¬ 𝐶 ∈ 𝐵 ↔ 𝐵 ⊆ 𝐶 ) ) |
| 8 |
7
|
pm5.32da |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
| 9 |
1 8
|
bitrid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶 ) ) ) |