Metamath Proof Explorer


Theorem ordeldif

Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion ordeldif ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐶 ∈ ( 𝐴𝐵 ) ↔ ( 𝐶𝐴𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐶 ∈ ( 𝐴𝐵 ) ↔ ( 𝐶𝐴 ∧ ¬ 𝐶𝐵 ) )
2 simpr ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord 𝐵 )
3 ordelord ( ( Ord 𝐴𝐶𝐴 ) → Ord 𝐶 )
4 3 adantlr ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐶𝐴 ) → Ord 𝐶 )
5 ordtri1 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵𝐶 ↔ ¬ 𝐶𝐵 ) )
6 2 4 5 syl2an2r ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐶𝐴 ) → ( 𝐵𝐶 ↔ ¬ 𝐶𝐵 ) )
7 6 bicomd ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐶𝐴 ) → ( ¬ 𝐶𝐵𝐵𝐶 ) )
8 7 pm5.32da ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐶𝐴 ∧ ¬ 𝐶𝐵 ) ↔ ( 𝐶𝐴𝐵𝐶 ) ) )
9 1 8 bitrid ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐶 ∈ ( 𝐴𝐵 ) ↔ ( 𝐶𝐴𝐵𝐶 ) ) )