Description: The concatenation of two transfinite series is onto the union of the ranges. (Contributed by RP, 24-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfsconcat.op | |- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
|
Assertion | tfsconcatfo | |- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) : ( C +o D ) -onto-> ( ran A u. ran B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfsconcat.op | |- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
|
2 | 1 | tfsconcatfn | |- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) Fn ( C +o D ) ) |
3 | 1 | tfsconcatrn | |- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ( ran A u. ran B ) ) |
4 | df-fo | |- ( ( A .+ B ) : ( C +o D ) -onto-> ( ran A u. ran B ) <-> ( ( A .+ B ) Fn ( C +o D ) /\ ran ( A .+ B ) = ( ran A u. ran B ) ) ) |
|
5 | 2 3 4 | sylanbrc | |- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) : ( C +o D ) -onto-> ( ran A u. ran B ) ) |