Metamath Proof Explorer


Theorem tfsconcatfo

Description: The concatenation of two transfinite series is onto the union of the ranges. (Contributed by RP, 24-Feb-2025)

Ref Expression
Hypothesis tfsconcat.op
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) )
Assertion tfsconcatfo
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) : ( C +o D ) -onto-> ( ran A u. ran B ) )

Proof

Step Hyp Ref Expression
1 tfsconcat.op
 |-  .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) )
2 1 tfsconcatfn
 |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) Fn ( C +o D ) )
3 1 tfsconcatrn
 |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ran ( A .+ B ) = ( ran A u. ran B ) )
4 df-fo
 |-  ( ( A .+ B ) : ( C +o D ) -onto-> ( ran A u. ran B ) <-> ( ( A .+ B ) Fn ( C +o D ) /\ ran ( A .+ B ) = ( ran A u. ran B ) ) )
5 2 3 4 sylanbrc
 |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) : ( C +o D ) -onto-> ( ran A u. ran B ) )