Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
|
simpll |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> A Fn C ) |
3 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> C e. On ) |
4 |
|
simplrr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> D e. On ) |
5 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> x e. ( ( C +o D ) \ C ) ) |
6 |
|
tfsconcatlem |
|- ( ( C e. On /\ D e. On /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
8 |
7
|
ralrimiva |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
9 |
|
eqid |
|- { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } |
10 |
9
|
fnopabg |
|- ( A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
11 |
8 10
|
sylib |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
12 |
|
disjdif |
|- ( C i^i ( ( C +o D ) \ C ) ) = (/) |
13 |
12
|
a1i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( C i^i ( ( C +o D ) \ C ) ) = (/) ) |
14 |
2 11 13
|
fnund |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) Fn ( C u. ( ( C +o D ) \ C ) ) ) |
15 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
16 |
|
oaword1 |
|- ( ( C e. On /\ D e. On ) -> C C_ ( C +o D ) ) |
17 |
|
undif |
|- ( C C_ ( C +o D ) <-> ( C u. ( ( C +o D ) \ C ) ) = ( C +o D ) ) |
18 |
16 17
|
sylib |
|- ( ( C e. On /\ D e. On ) -> ( C u. ( ( C +o D ) \ C ) ) = ( C +o D ) ) |
19 |
18
|
eqcomd |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) = ( C u. ( ( C +o D ) \ C ) ) ) |
20 |
19
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( C +o D ) = ( C u. ( ( C +o D ) \ C ) ) ) |
21 |
15 20
|
fneq12d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( A .+ B ) Fn ( C +o D ) <-> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) Fn ( C u. ( ( C +o D ) \ C ) ) ) ) |
22 |
14 21
|
mpbird |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) Fn ( C +o D ) ) |