Step |
Hyp |
Ref |
Expression |
1 |
|
onss |
|- ( B e. On -> B C_ On ) |
2 |
1
|
3ad2ant2 |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> B C_ On ) |
3 |
|
oacl |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
4 |
|
eloni |
|- ( ( A +o B ) e. On -> Ord ( A +o B ) ) |
5 |
3 4
|
syl |
|- ( ( A e. On /\ B e. On ) -> Ord ( A +o B ) ) |
6 |
|
eloni |
|- ( A e. On -> Ord A ) |
7 |
6
|
adantr |
|- ( ( A e. On /\ B e. On ) -> Ord A ) |
8 |
|
ordeldif |
|- ( ( Ord ( A +o B ) /\ Ord A ) -> ( C e. ( ( A +o B ) \ A ) <-> ( C e. ( A +o B ) /\ A C_ C ) ) ) |
9 |
5 7 8
|
syl2anc |
|- ( ( A e. On /\ B e. On ) -> ( C e. ( ( A +o B ) \ A ) <-> ( C e. ( A +o B ) /\ A C_ C ) ) ) |
10 |
9
|
biimpa |
|- ( ( ( A e. On /\ B e. On ) /\ C e. ( ( A +o B ) \ A ) ) -> ( C e. ( A +o B ) /\ A C_ C ) ) |
11 |
10
|
ancomd |
|- ( ( ( A e. On /\ B e. On ) /\ C e. ( ( A +o B ) \ A ) ) -> ( A C_ C /\ C e. ( A +o B ) ) ) |
12 |
11
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( C e. ( ( A +o B ) \ A ) -> ( A C_ C /\ C e. ( A +o B ) ) ) ) |
13 |
12
|
imdistani |
|- ( ( ( A e. On /\ B e. On ) /\ C e. ( ( A +o B ) \ A ) ) -> ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) ) |
14 |
13
|
3impa |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) ) |
15 |
|
oawordex2 |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> E. y e. B ( A +o y ) = C ) |
16 |
14 15
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E. y e. B ( A +o y ) = C ) |
17 |
|
simp1 |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> A e. On ) |
18 |
|
onss |
|- ( ( A +o B ) e. On -> ( A +o B ) C_ On ) |
19 |
3 18
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) C_ On ) |
20 |
19
|
ssdifd |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) \ A ) C_ ( On \ A ) ) |
21 |
20
|
sselda |
|- ( ( ( A e. On /\ B e. On ) /\ C e. ( ( A +o B ) \ A ) ) -> C e. ( On \ A ) ) |
22 |
21
|
3impa |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> C e. ( On \ A ) ) |
23 |
|
ordon |
|- Ord On |
24 |
17 6
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> Ord A ) |
25 |
|
ordeldif |
|- ( ( Ord On /\ Ord A ) -> ( C e. ( On \ A ) <-> ( C e. On /\ A C_ C ) ) ) |
26 |
23 24 25
|
sylancr |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> ( C e. ( On \ A ) <-> ( C e. On /\ A C_ C ) ) ) |
27 |
22 26
|
mpbid |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> ( C e. On /\ A C_ C ) ) |
28 |
|
anass |
|- ( ( ( A e. On /\ C e. On ) /\ A C_ C ) <-> ( A e. On /\ ( C e. On /\ A C_ C ) ) ) |
29 |
17 27 28
|
sylanbrc |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> ( ( A e. On /\ C e. On ) /\ A C_ C ) ) |
30 |
|
oawordeu |
|- ( ( ( A e. On /\ C e. On ) /\ A C_ C ) -> E! y e. On ( A +o y ) = C ) |
31 |
29 30
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E! y e. On ( A +o y ) = C ) |
32 |
|
reuss |
|- ( ( B C_ On /\ E. y e. B ( A +o y ) = C /\ E! y e. On ( A +o y ) = C ) -> E! y e. B ( A +o y ) = C ) |
33 |
2 16 31 32
|
syl3anc |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E! y e. B ( A +o y ) = C ) |
34 |
|
reurmo |
|- ( E! y e. B ( A +o y ) = C -> E* y e. B ( A +o y ) = C ) |
35 |
33 34
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E* y e. B ( A +o y ) = C ) |
36 |
|
df-rmo |
|- ( E* y e. B ( A +o y ) = C <-> E* y ( y e. B /\ ( A +o y ) = C ) ) |
37 |
35 36
|
sylib |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E* y ( y e. B /\ ( A +o y ) = C ) ) |
38 |
|
moeq |
|- E* x x = ( F ` y ) |
39 |
38
|
ax-gen |
|- A. y E* x x = ( F ` y ) |
40 |
|
moexexvw |
|- ( ( E* y ( y e. B /\ ( A +o y ) = C ) /\ A. y E* x x = ( F ` y ) ) -> E* x E. y ( ( y e. B /\ ( A +o y ) = C ) /\ x = ( F ` y ) ) ) |
41 |
37 39 40
|
sylancl |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E* x E. y ( ( y e. B /\ ( A +o y ) = C ) /\ x = ( F ` y ) ) ) |
42 |
|
df-rex |
|- ( E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> E. y ( y e. B /\ ( ( A +o y ) = C /\ x = ( F ` y ) ) ) ) |
43 |
|
anass |
|- ( ( ( y e. B /\ ( A +o y ) = C ) /\ x = ( F ` y ) ) <-> ( y e. B /\ ( ( A +o y ) = C /\ x = ( F ` y ) ) ) ) |
44 |
43
|
exbii |
|- ( E. y ( ( y e. B /\ ( A +o y ) = C ) /\ x = ( F ` y ) ) <-> E. y ( y e. B /\ ( ( A +o y ) = C /\ x = ( F ` y ) ) ) ) |
45 |
42 44
|
bitr4i |
|- ( E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> E. y ( ( y e. B /\ ( A +o y ) = C ) /\ x = ( F ` y ) ) ) |
46 |
45
|
mobii |
|- ( E* x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> E* x E. y ( ( y e. B /\ ( A +o y ) = C ) /\ x = ( F ` y ) ) ) |
47 |
41 46
|
sylibr |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E* x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) ) |
48 |
|
fvex |
|- ( F ` y ) e. _V |
49 |
48
|
isseti |
|- E. x x = ( F ` y ) |
50 |
49
|
jctr |
|- ( ( A +o y ) = C -> ( ( A +o y ) = C /\ E. x x = ( F ` y ) ) ) |
51 |
50
|
a1i |
|- ( ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) /\ y e. B ) -> ( ( A +o y ) = C -> ( ( A +o y ) = C /\ E. x x = ( F ` y ) ) ) ) |
52 |
51
|
reximdva |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> ( E. y e. B ( A +o y ) = C -> E. y e. B ( ( A +o y ) = C /\ E. x x = ( F ` y ) ) ) ) |
53 |
16 52
|
mpd |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E. y e. B ( ( A +o y ) = C /\ E. x x = ( F ` y ) ) ) |
54 |
|
rexcom4a |
|- ( E. x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> E. y e. B ( ( A +o y ) = C /\ E. x x = ( F ` y ) ) ) |
55 |
|
exmoeu |
|- ( E. x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> ( E* x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) -> E! x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) ) ) |
56 |
54 55
|
bitr3i |
|- ( E. y e. B ( ( A +o y ) = C /\ E. x x = ( F ` y ) ) <-> ( E* x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) -> E! x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) ) ) |
57 |
53 56
|
sylib |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> ( E* x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) -> E! x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) ) ) |
58 |
47 57
|
mpd |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E! x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) ) |
59 |
|
eqcom |
|- ( ( A +o y ) = C <-> C = ( A +o y ) ) |
60 |
59
|
anbi1i |
|- ( ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> ( C = ( A +o y ) /\ x = ( F ` y ) ) ) |
61 |
60
|
rexbii |
|- ( E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> E. y e. B ( C = ( A +o y ) /\ x = ( F ` y ) ) ) |
62 |
61
|
eubii |
|- ( E! x E. y e. B ( ( A +o y ) = C /\ x = ( F ` y ) ) <-> E! x E. y e. B ( C = ( A +o y ) /\ x = ( F ` y ) ) ) |
63 |
58 62
|
sylib |
|- ( ( A e. On /\ B e. On /\ C e. ( ( A +o B ) \ A ) ) -> E! x E. y e. B ( C = ( A +o y ) /\ x = ( F ` y ) ) ) |