Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
|- ( A = if ( A e. On , A , (/) ) -> ( A C_ B <-> if ( A e. On , A , (/) ) C_ B ) ) |
2 |
|
oveq1 |
|- ( A = if ( A e. On , A , (/) ) -> ( A +o x ) = ( if ( A e. On , A , (/) ) +o x ) ) |
3 |
2
|
eqeq1d |
|- ( A = if ( A e. On , A , (/) ) -> ( ( A +o x ) = B <-> ( if ( A e. On , A , (/) ) +o x ) = B ) ) |
4 |
3
|
reubidv |
|- ( A = if ( A e. On , A , (/) ) -> ( E! x e. On ( A +o x ) = B <-> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B ) ) |
5 |
1 4
|
imbi12d |
|- ( A = if ( A e. On , A , (/) ) -> ( ( A C_ B -> E! x e. On ( A +o x ) = B ) <-> ( if ( A e. On , A , (/) ) C_ B -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B ) ) ) |
6 |
|
sseq2 |
|- ( B = if ( B e. On , B , (/) ) -> ( if ( A e. On , A , (/) ) C_ B <-> if ( A e. On , A , (/) ) C_ if ( B e. On , B , (/) ) ) ) |
7 |
|
eqeq2 |
|- ( B = if ( B e. On , B , (/) ) -> ( ( if ( A e. On , A , (/) ) +o x ) = B <-> ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) ) |
8 |
7
|
reubidv |
|- ( B = if ( B e. On , B , (/) ) -> ( E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B <-> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) ) |
9 |
6 8
|
imbi12d |
|- ( B = if ( B e. On , B , (/) ) -> ( ( if ( A e. On , A , (/) ) C_ B -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B ) <-> ( if ( A e. On , A , (/) ) C_ if ( B e. On , B , (/) ) -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) ) ) |
10 |
|
0elon |
|- (/) e. On |
11 |
10
|
elimel |
|- if ( A e. On , A , (/) ) e. On |
12 |
10
|
elimel |
|- if ( B e. On , B , (/) ) e. On |
13 |
|
eqid |
|- { y e. On | if ( B e. On , B , (/) ) C_ ( if ( A e. On , A , (/) ) +o y ) } = { y e. On | if ( B e. On , B , (/) ) C_ ( if ( A e. On , A , (/) ) +o y ) } |
14 |
11 12 13
|
oawordeulem |
|- ( if ( A e. On , A , (/) ) C_ if ( B e. On , B , (/) ) -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) |
15 |
5 9 14
|
dedth2h |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B -> E! x e. On ( A +o x ) = B ) ) |
16 |
15
|
imp |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> E! x e. On ( A +o x ) = B ) |