Metamath Proof Explorer


Theorem tfsconcatlem

Description: Lemma for tfsconcatun . (Contributed by RP, 23-Feb-2025)

Ref Expression
Assertion tfsconcatlem A On B On C A + 𝑜 B A ∃! x y B C = A + 𝑜 y x = F y

Proof

Step Hyp Ref Expression
1 onss B On B On
2 1 3ad2ant2 A On B On C A + 𝑜 B A B On
3 oacl A On B On A + 𝑜 B On
4 eloni A + 𝑜 B On Ord A + 𝑜 B
5 3 4 syl A On B On Ord A + 𝑜 B
6 eloni A On Ord A
7 6 adantr A On B On Ord A
8 ordeldif Ord A + 𝑜 B Ord A C A + 𝑜 B A C A + 𝑜 B A C
9 5 7 8 syl2anc A On B On C A + 𝑜 B A C A + 𝑜 B A C
10 9 biimpa A On B On C A + 𝑜 B A C A + 𝑜 B A C
11 10 ancomd A On B On C A + 𝑜 B A A C C A + 𝑜 B
12 11 ex A On B On C A + 𝑜 B A A C C A + 𝑜 B
13 12 imdistani A On B On C A + 𝑜 B A A On B On A C C A + 𝑜 B
14 13 3impa A On B On C A + 𝑜 B A A On B On A C C A + 𝑜 B
15 oawordex2 A On B On A C C A + 𝑜 B y B A + 𝑜 y = C
16 14 15 syl A On B On C A + 𝑜 B A y B A + 𝑜 y = C
17 simp1 A On B On C A + 𝑜 B A A On
18 onss A + 𝑜 B On A + 𝑜 B On
19 3 18 syl A On B On A + 𝑜 B On
20 19 ssdifd A On B On A + 𝑜 B A On A
21 20 sselda A On B On C A + 𝑜 B A C On A
22 21 3impa A On B On C A + 𝑜 B A C On A
23 ordon Ord On
24 17 6 syl A On B On C A + 𝑜 B A Ord A
25 ordeldif Ord On Ord A C On A C On A C
26 23 24 25 sylancr A On B On C A + 𝑜 B A C On A C On A C
27 22 26 mpbid A On B On C A + 𝑜 B A C On A C
28 anass A On C On A C A On C On A C
29 17 27 28 sylanbrc A On B On C A + 𝑜 B A A On C On A C
30 oawordeu A On C On A C ∃! y On A + 𝑜 y = C
31 29 30 syl A On B On C A + 𝑜 B A ∃! y On A + 𝑜 y = C
32 reuss B On y B A + 𝑜 y = C ∃! y On A + 𝑜 y = C ∃! y B A + 𝑜 y = C
33 2 16 31 32 syl3anc A On B On C A + 𝑜 B A ∃! y B A + 𝑜 y = C
34 reurmo ∃! y B A + 𝑜 y = C * y B A + 𝑜 y = C
35 33 34 syl A On B On C A + 𝑜 B A * y B A + 𝑜 y = C
36 df-rmo * y B A + 𝑜 y = C * y y B A + 𝑜 y = C
37 35 36 sylib A On B On C A + 𝑜 B A * y y B A + 𝑜 y = C
38 moeq * x x = F y
39 38 ax-gen y * x x = F y
40 moexexvw * y y B A + 𝑜 y = C y * x x = F y * x y y B A + 𝑜 y = C x = F y
41 37 39 40 sylancl A On B On C A + 𝑜 B A * x y y B A + 𝑜 y = C x = F y
42 df-rex y B A + 𝑜 y = C x = F y y y B A + 𝑜 y = C x = F y
43 anass y B A + 𝑜 y = C x = F y y B A + 𝑜 y = C x = F y
44 43 exbii y y B A + 𝑜 y = C x = F y y y B A + 𝑜 y = C x = F y
45 42 44 bitr4i y B A + 𝑜 y = C x = F y y y B A + 𝑜 y = C x = F y
46 45 mobii * x y B A + 𝑜 y = C x = F y * x y y B A + 𝑜 y = C x = F y
47 41 46 sylibr A On B On C A + 𝑜 B A * x y B A + 𝑜 y = C x = F y
48 fvex F y V
49 48 isseti x x = F y
50 49 jctr A + 𝑜 y = C A + 𝑜 y = C x x = F y
51 50 a1i A On B On C A + 𝑜 B A y B A + 𝑜 y = C A + 𝑜 y = C x x = F y
52 51 reximdva A On B On C A + 𝑜 B A y B A + 𝑜 y = C y B A + 𝑜 y = C x x = F y
53 16 52 mpd A On B On C A + 𝑜 B A y B A + 𝑜 y = C x x = F y
54 rexcom4a x y B A + 𝑜 y = C x = F y y B A + 𝑜 y = C x x = F y
55 exmoeu x y B A + 𝑜 y = C x = F y * x y B A + 𝑜 y = C x = F y ∃! x y B A + 𝑜 y = C x = F y
56 54 55 bitr3i y B A + 𝑜 y = C x x = F y * x y B A + 𝑜 y = C x = F y ∃! x y B A + 𝑜 y = C x = F y
57 53 56 sylib A On B On C A + 𝑜 B A * x y B A + 𝑜 y = C x = F y ∃! x y B A + 𝑜 y = C x = F y
58 47 57 mpd A On B On C A + 𝑜 B A ∃! x y B A + 𝑜 y = C x = F y
59 eqcom A + 𝑜 y = C C = A + 𝑜 y
60 59 anbi1i A + 𝑜 y = C x = F y C = A + 𝑜 y x = F y
61 60 rexbii y B A + 𝑜 y = C x = F y y B C = A + 𝑜 y x = F y
62 61 eubii ∃! x y B A + 𝑜 y = C x = F y ∃! x y B C = A + 𝑜 y x = F y
63 58 62 sylib A On B On C A + 𝑜 B A ∃! x y B C = A + 𝑜 y x = F y