| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onss |
|
| 2 |
1
|
3ad2ant2 |
|
| 3 |
|
oacl |
|
| 4 |
|
eloni |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
eloni |
|
| 7 |
6
|
adantr |
|
| 8 |
|
ordeldif |
|
| 9 |
5 7 8
|
syl2anc |
|
| 10 |
9
|
biimpa |
|
| 11 |
10
|
ancomd |
|
| 12 |
11
|
ex |
|
| 13 |
12
|
imdistani |
|
| 14 |
13
|
3impa |
|
| 15 |
|
oawordex2 |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
simp1 |
|
| 18 |
|
onss |
|
| 19 |
3 18
|
syl |
|
| 20 |
19
|
ssdifd |
|
| 21 |
20
|
sselda |
|
| 22 |
21
|
3impa |
|
| 23 |
|
ordon |
|
| 24 |
17 6
|
syl |
|
| 25 |
|
ordeldif |
|
| 26 |
23 24 25
|
sylancr |
|
| 27 |
22 26
|
mpbid |
|
| 28 |
|
anass |
|
| 29 |
17 27 28
|
sylanbrc |
|
| 30 |
|
oawordeu |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
reuss |
|
| 33 |
2 16 31 32
|
syl3anc |
|
| 34 |
|
reurmo |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
df-rmo |
|
| 37 |
35 36
|
sylib |
|
| 38 |
|
moeq |
|
| 39 |
38
|
ax-gen |
|
| 40 |
|
moexexvw |
|
| 41 |
37 39 40
|
sylancl |
|
| 42 |
|
df-rex |
|
| 43 |
|
anass |
|
| 44 |
43
|
exbii |
|
| 45 |
42 44
|
bitr4i |
|
| 46 |
45
|
mobii |
|
| 47 |
41 46
|
sylibr |
|
| 48 |
|
fvex |
|
| 49 |
48
|
isseti |
|
| 50 |
49
|
jctr |
|
| 51 |
50
|
a1i |
|
| 52 |
51
|
reximdva |
|
| 53 |
16 52
|
mpd |
|
| 54 |
|
rexcom4a |
|
| 55 |
|
exmoeu |
|
| 56 |
54 55
|
bitr3i |
|
| 57 |
53 56
|
sylib |
|
| 58 |
47 57
|
mpd |
|
| 59 |
|
eqcom |
|
| 60 |
59
|
anbi1i |
|
| 61 |
60
|
rexbii |
|
| 62 |
61
|
eubii |
|
| 63 |
58 62
|
sylib |
|