Step |
Hyp |
Ref |
Expression |
1 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → 𝐵 ⊆ On ) |
3 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
4 |
|
eloni |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → Ord ( 𝐴 +o 𝐵 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 +o 𝐵 ) ) |
6 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord 𝐴 ) |
8 |
|
ordeldif |
⊢ ( ( Ord ( 𝐴 +o 𝐵 ) ∧ Ord 𝐴 ) → ( 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐶 ∈ ( 𝐴 +o 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) ) ) |
9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐶 ∈ ( 𝐴 +o 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( 𝐶 ∈ ( 𝐴 +o 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) ) |
11 |
10
|
ancomd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) |
12 |
11
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) → ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
13 |
12
|
imdistani |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
14 |
13
|
3impa |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
15 |
|
oawordex2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ) |
17 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → 𝐴 ∈ On ) |
18 |
|
onss |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → ( 𝐴 +o 𝐵 ) ⊆ On ) |
19 |
3 18
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ⊆ On ) |
20 |
19
|
ssdifd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ⊆ ( On ∖ 𝐴 ) ) |
21 |
20
|
sselda |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → 𝐶 ∈ ( On ∖ 𝐴 ) ) |
22 |
21
|
3impa |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → 𝐶 ∈ ( On ∖ 𝐴 ) ) |
23 |
|
ordon |
⊢ Ord On |
24 |
17 6
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → Ord 𝐴 ) |
25 |
|
ordeldif |
⊢ ( ( Ord On ∧ Ord 𝐴 ) → ( 𝐶 ∈ ( On ∖ 𝐴 ) ↔ ( 𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶 ) ) ) |
26 |
23 24 25
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( 𝐶 ∈ ( On ∖ 𝐴 ) ↔ ( 𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶 ) ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( 𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶 ) ) |
28 |
|
anass |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐶 ) ↔ ( 𝐴 ∈ On ∧ ( 𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶 ) ) ) |
29 |
17 27 28
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐶 ) ) |
30 |
|
oawordeu |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐶 ) → ∃! 𝑦 ∈ On ( 𝐴 +o 𝑦 ) = 𝐶 ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃! 𝑦 ∈ On ( 𝐴 +o 𝑦 ) = 𝐶 ) |
32 |
|
reuss |
⊢ ( ( 𝐵 ⊆ On ∧ ∃ 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃! 𝑦 ∈ On ( 𝐴 +o 𝑦 ) = 𝐶 ) → ∃! 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ) |
33 |
2 16 31 32
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃! 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ) |
34 |
|
reurmo |
⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 → ∃* 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ) |
35 |
33 34
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃* 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ) |
36 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ) |
37 |
35 36
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ) |
38 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) |
39 |
38
|
ax-gen |
⊢ ∀ 𝑦 ∃* 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) |
40 |
|
moexexvw |
⊢ ( ( ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ ∀ 𝑦 ∃* 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → ∃* 𝑥 ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
41 |
37 39 40
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃* 𝑥 ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
42 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
43 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
44 |
43
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
45 |
42 44
|
bitr4i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
46 |
45
|
mobii |
⊢ ( ∃* 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃* 𝑥 ∃ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐶 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
47 |
41 46
|
sylibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃* 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
49 |
48
|
isseti |
⊢ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) |
50 |
49
|
jctr |
⊢ ( ( 𝐴 +o 𝑦 ) = 𝐶 → ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
51 |
50
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 +o 𝑦 ) = 𝐶 → ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
52 |
51
|
reximdva |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐴 +o 𝑦 ) = 𝐶 → ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
53 |
16 52
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
54 |
|
rexcom4a |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
55 |
|
exmoeu |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∃* 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
56 |
54 55
|
bitr3i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ ∃ 𝑥 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∃* 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
57 |
53 56
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ( ∃* 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) ) |
58 |
47 57
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
59 |
|
eqcom |
⊢ ( ( 𝐴 +o 𝑦 ) = 𝐶 ↔ 𝐶 = ( 𝐴 +o 𝑦 ) ) |
60 |
59
|
anbi1i |
⊢ ( ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐶 = ( 𝐴 +o 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
61 |
60
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐶 = ( 𝐴 +o 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
62 |
61
|
eubii |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐴 +o 𝑦 ) = 𝐶 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ↔ ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝐶 = ( 𝐴 +o 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
58 62
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝐶 = ( 𝐴 +o 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |