Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → 𝐴 ⊆ 𝐶 ) |
2 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → 𝐴 ∈ On ) |
3 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) → 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) |
5 |
|
onelon |
⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ On ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) → 𝐶 ∈ On ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → 𝐶 ∈ On ) |
7 |
|
oawordex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐶 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐶 ) ) |
8 |
2 6 7
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → ( 𝐴 ⊆ 𝐶 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐶 ) ) |
9 |
1 8
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐶 ) |
10 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → ( 𝐴 +o 𝑥 ) = 𝐶 ) |
11 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) |
13 |
10 12
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) |
14 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → 𝑥 ∈ On ) |
15 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → 𝐵 ∈ On ) |
16 |
2
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → 𝐴 ∈ On ) |
17 |
|
oaord |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
19 |
13 18
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) ∧ ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐶 ) ) → 𝑥 ∈ 𝐵 ) |
20 |
9 19 10
|
reximssdv |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 +o 𝐵 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) = 𝐶 ) |