Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Natural addition of Cantor normal forms
nnawordexg
Metamath Proof Explorer
Description: If an ordinal, B , is in a half-open interval between some A and
the next limit ordinal, B is the sum of the A and some natural
number. This weakens the antecedent of nnawordex . (Contributed by RP , 7-Jan-2025)
Ref
Expression
Assertion
nnawordexg
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) → 𝐴 ∈ On )
2
omelon
⊢ ω ∈ On
3
2
a1i
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) → ω ∈ On )
4
3simpc
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) )
5
oawordex2
⊢ ( ( ( 𝐴 ∈ On ∧ ω ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 )
6
1 3 4 5
syl21anc
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +o ω ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 )