Metamath Proof Explorer


Theorem nnawordexg

Description: If an ordinal, B , is in a half-open interval between some A and the next limit ordinal, B is the sum of the A and some natural number. This weakens the antecedent of nnawordex . (Contributed by RP, 7-Jan-2025)

Ref Expression
Assertion nnawordexg ( ( 𝐴 ∈ On ∧ 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ On ∧ 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) → 𝐴 ∈ On )
2 omelon ω ∈ On
3 2 a1i ( ( 𝐴 ∈ On ∧ 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) → ω ∈ On )
4 3simpc ( ( 𝐴 ∈ On ∧ 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) → ( 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) )
5 oawordex2 ( ( ( 𝐴 ∈ On ∧ ω ∈ On ) ∧ ( 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 )
6 1 3 4 5 syl21anc ( ( 𝐴 ∈ On ∧ 𝐴𝐵𝐵 ∈ ( 𝐴 +o ω ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 )