Metamath Proof Explorer


Theorem succlg

Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion succlg ( ( 𝐴𝐵 ∧ ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) ) → suc 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐵 = ∅ → ( 𝐴𝐵𝐴 ∈ ∅ ) )
2 noel ¬ 𝐴 ∈ ∅
3 2 pm2.21i ( 𝐴 ∈ ∅ → suc 𝐴𝐵 )
4 1 3 biimtrdi ( 𝐵 = ∅ → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
5 4 com12 ( 𝐴𝐵 → ( 𝐵 = ∅ → suc 𝐴𝐵 ) )
6 simpl ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → 𝐴𝐵 )
7 eldifi ( 𝐶 ∈ ( On ∖ 1o ) → 𝐶 ∈ On )
8 7 ad2antll ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → 𝐶 ∈ On )
9 omex ω ∈ V
10 limom Lim ω
11 9 10 pm3.2i ( ω ∈ V ∧ Lim ω )
12 11 a1i ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( ω ∈ V ∧ Lim ω ) )
13 ondif1 ( 𝐶 ∈ ( On ∖ 1o ) ↔ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) )
14 13 simprbi ( 𝐶 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐶 )
15 14 ad2antll ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ∅ ∈ 𝐶 )
16 omlimcl2 ( ( ( 𝐶 ∈ On ∧ ( ω ∈ V ∧ Lim ω ) ) ∧ ∅ ∈ 𝐶 ) → Lim ( ω ·o 𝐶 ) )
17 8 12 15 16 syl21anc ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → Lim ( ω ·o 𝐶 ) )
18 limeq ( 𝐵 = ( ω ·o 𝐶 ) → ( Lim 𝐵 ↔ Lim ( ω ·o 𝐶 ) ) )
19 18 ad2antrl ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( Lim 𝐵 ↔ Lim ( ω ·o 𝐶 ) ) )
20 17 19 mpbird ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → Lim 𝐵 )
21 limsuc ( Lim 𝐵 → ( 𝐴𝐵 ↔ suc 𝐴𝐵 ) )
22 20 21 syl ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( 𝐴𝐵 ↔ suc 𝐴𝐵 ) )
23 6 22 mpbid ( ( 𝐴𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → suc 𝐴𝐵 )
24 23 ex ( 𝐴𝐵 → ( ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → suc 𝐴𝐵 ) )
25 5 24 jaod ( 𝐴𝐵 → ( ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → suc 𝐴𝐵 ) )
26 25 imp ( ( 𝐴𝐵 ∧ ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) ) → suc 𝐴𝐵 )