Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ∅ ) ) |
2 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
3 |
2
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → suc 𝐴 ∈ 𝐵 ) |
4 |
1 3
|
biimtrdi |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ 𝐵 → suc 𝐴 ∈ 𝐵 ) ) |
5 |
4
|
com12 |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 = ∅ → suc 𝐴 ∈ 𝐵 ) ) |
6 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → 𝐴 ∈ 𝐵 ) |
7 |
|
eldifi |
⊢ ( 𝐶 ∈ ( On ∖ 1o ) → 𝐶 ∈ On ) |
8 |
7
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → 𝐶 ∈ On ) |
9 |
|
omex |
⊢ ω ∈ V |
10 |
|
limom |
⊢ Lim ω |
11 |
9 10
|
pm3.2i |
⊢ ( ω ∈ V ∧ Lim ω ) |
12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( ω ∈ V ∧ Lim ω ) ) |
13 |
|
ondif1 |
⊢ ( 𝐶 ∈ ( On ∖ 1o ) ↔ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) |
14 |
13
|
simprbi |
⊢ ( 𝐶 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐶 ) |
15 |
14
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ∅ ∈ 𝐶 ) |
16 |
|
omlimcl2 |
⊢ ( ( ( 𝐶 ∈ On ∧ ( ω ∈ V ∧ Lim ω ) ) ∧ ∅ ∈ 𝐶 ) → Lim ( ω ·o 𝐶 ) ) |
17 |
8 12 15 16
|
syl21anc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → Lim ( ω ·o 𝐶 ) ) |
18 |
|
limeq |
⊢ ( 𝐵 = ( ω ·o 𝐶 ) → ( Lim 𝐵 ↔ Lim ( ω ·o 𝐶 ) ) ) |
19 |
18
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( Lim 𝐵 ↔ Lim ( ω ·o 𝐶 ) ) ) |
20 |
17 19
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → Lim 𝐵 ) |
21 |
|
limsuc |
⊢ ( Lim 𝐵 → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
23 |
6 22
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → suc 𝐴 ∈ 𝐵 ) |
24 |
23
|
ex |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → suc 𝐴 ∈ 𝐵 ) ) |
25 |
5 24
|
jaod |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → suc 𝐴 ∈ 𝐵 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) ) → suc 𝐴 ∈ 𝐵 ) |