| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ∅ ) ) |
| 2 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
| 3 |
2
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → suc 𝐴 ∈ 𝐵 ) |
| 4 |
1 3
|
biimtrdi |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ 𝐵 → suc 𝐴 ∈ 𝐵 ) ) |
| 5 |
4
|
com12 |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 = ∅ → suc 𝐴 ∈ 𝐵 ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → 𝐴 ∈ 𝐵 ) |
| 7 |
|
eldifi |
⊢ ( 𝐶 ∈ ( On ∖ 1o ) → 𝐶 ∈ On ) |
| 8 |
7
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → 𝐶 ∈ On ) |
| 9 |
|
omex |
⊢ ω ∈ V |
| 10 |
|
limom |
⊢ Lim ω |
| 11 |
9 10
|
pm3.2i |
⊢ ( ω ∈ V ∧ Lim ω ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( ω ∈ V ∧ Lim ω ) ) |
| 13 |
|
ondif1 |
⊢ ( 𝐶 ∈ ( On ∖ 1o ) ↔ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) |
| 14 |
13
|
simprbi |
⊢ ( 𝐶 ∈ ( On ∖ 1o ) → ∅ ∈ 𝐶 ) |
| 15 |
14
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ∅ ∈ 𝐶 ) |
| 16 |
|
omlimcl2 |
⊢ ( ( ( 𝐶 ∈ On ∧ ( ω ∈ V ∧ Lim ω ) ) ∧ ∅ ∈ 𝐶 ) → Lim ( ω ·o 𝐶 ) ) |
| 17 |
8 12 15 16
|
syl21anc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → Lim ( ω ·o 𝐶 ) ) |
| 18 |
|
limeq |
⊢ ( 𝐵 = ( ω ·o 𝐶 ) → ( Lim 𝐵 ↔ Lim ( ω ·o 𝐶 ) ) ) |
| 19 |
18
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( Lim 𝐵 ↔ Lim ( ω ·o 𝐶 ) ) ) |
| 20 |
17 19
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → Lim 𝐵 ) |
| 21 |
|
limsuc |
⊢ ( Lim 𝐵 → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
| 23 |
6 22
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → suc 𝐴 ∈ 𝐵 ) |
| 24 |
23
|
ex |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → suc 𝐴 ∈ 𝐵 ) ) |
| 25 |
5 24
|
jaod |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) → suc 𝐴 ∈ 𝐵 ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 = ∅ ∨ ( 𝐵 = ( ω ·o 𝐶 ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) ) → suc 𝐴 ∈ 𝐵 ) |