Metamath Proof Explorer


Theorem dflim5

Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion dflim5 ( Lim 𝐴 ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 limord ( Lim 𝐴 → Ord 𝐴 )
2 ordeleqon ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) )
3 2 biimpi ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ) )
4 3 orcomd ( Ord 𝐴 → ( 𝐴 = On ∨ 𝐴 ∈ On ) )
5 1 4 syl ( Lim 𝐴 → ( 𝐴 = On ∨ 𝐴 ∈ On ) )
6 5 pm4.71ri ( Lim 𝐴 ↔ ( ( 𝐴 = On ∨ 𝐴 ∈ On ) ∧ Lim 𝐴 ) )
7 andir ( ( ( 𝐴 = On ∨ 𝐴 ∈ On ) ∧ Lim 𝐴 ) ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) )
8 6 7 bitri ( Lim 𝐴 ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) )
9 limon Lim On
10 limeq ( 𝐴 = On → ( Lim 𝐴 ↔ Lim On ) )
11 9 10 mpbiri ( 𝐴 = On → Lim 𝐴 )
12 11 pm4.71i ( 𝐴 = On ↔ ( 𝐴 = On ∧ Lim 𝐴 ) )
13 12 orbi1i ( ( 𝐴 = On ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) )
14 simpl ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → 𝐴 ∈ On )
15 omelon ω ∈ On
16 15 a1i ( 𝐴 ∈ On → ω ∈ On )
17 id ( 𝐴 ∈ On → 𝐴 ∈ On )
18 peano1 ∅ ∈ ω
19 18 ne0ii ω ≠ ∅
20 19 a1i ( 𝐴 ∈ On → ω ≠ ∅ )
21 16 17 20 3jca ( 𝐴 ∈ On → ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) )
22 omeulem1 ( ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 )
23 14 21 22 3syl ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 )
24 limeq ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝐴 ) )
25 24 biimprd ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( Lim 𝐴 → Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) )
26 simplr ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑦 ∈ ω )
27 nnlim ( 𝑦 ∈ ω → ¬ Lim 𝑦 )
28 26 27 syl ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ¬ Lim 𝑦 )
29 on0eln0 ( 𝑥 ∈ On → ( ∅ ∈ 𝑥𝑥 ≠ ∅ ) )
30 29 biimprd ( 𝑥 ∈ On → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) )
31 30 necon1bd ( 𝑥 ∈ On → ( ¬ ∅ ∈ 𝑥𝑥 = ∅ ) )
32 31 adantr ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ ∅ ∈ 𝑥𝑥 = ∅ ) )
33 32 imp ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑥 = ∅ )
34 33 26 jca ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) )
35 simpl ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → 𝑥 = ∅ )
36 35 oveq2d ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) = ( ω ·o ∅ ) )
37 om0 ( ω ∈ On → ( ω ·o ∅ ) = ∅ )
38 15 37 mp1i ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o ∅ ) = ∅ )
39 36 38 eqtrd ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) = ∅ )
40 39 oveq1d ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ∅ +o 𝑦 ) )
41 nna0r ( 𝑦 ∈ ω → ( ∅ +o 𝑦 ) = 𝑦 )
42 41 adantl ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ∅ +o 𝑦 ) = 𝑦 )
43 40 42 eqtrd ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝑦 )
44 limeq ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝑦 → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝑦 ) )
45 34 43 44 3syl ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝑦 ) )
46 28 45 mtbird ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) )
47 46 ex ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ ∅ ∈ 𝑥 → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) )
48 ovex ( ( ω ·o 𝑥 ) +o 𝑦 ) ∈ V
49 nlimsucg ( ( ( ω ·o 𝑥 ) +o 𝑦 ) ∈ V → ¬ Lim suc ( ( ω ·o 𝑥 ) +o 𝑦 ) )
50 48 49 mp1i ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ¬ Lim suc ( ( ω ·o 𝑥 ) +o 𝑦 ) )
51 nnord ( 𝑦 ∈ ω → Ord 𝑦 )
52 orduniorsuc ( Ord 𝑦 → ( 𝑦 = 𝑦𝑦 = suc 𝑦 ) )
53 51 52 syl ( 𝑦 ∈ ω → ( 𝑦 = 𝑦𝑦 = suc 𝑦 ) )
54 3ianor ( ¬ ( Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦 ) ↔ ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦 ) )
55 df-lim ( Lim 𝑦 ↔ ( Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦 ) )
56 54 55 xchnxbir ( ¬ Lim 𝑦 ↔ ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦 ) )
57 27 56 sylib ( 𝑦 ∈ ω → ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦 ) )
58 51 pm2.24d ( 𝑦 ∈ ω → ( ¬ Ord 𝑦 → ( 𝑦 = 𝑦𝑦 = ∅ ) ) )
59 nne ( ¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅ )
60 59 biimpi ( ¬ 𝑦 ≠ ∅ → 𝑦 = ∅ )
61 60 a1i13 ( 𝑦 ∈ ω → ( ¬ 𝑦 ≠ ∅ → ( 𝑦 = 𝑦𝑦 = ∅ ) ) )
62 pm2.21 ( ¬ 𝑦 = 𝑦 → ( 𝑦 = 𝑦𝑦 = ∅ ) )
63 62 a1i ( 𝑦 ∈ ω → ( ¬ 𝑦 = 𝑦 → ( 𝑦 = 𝑦𝑦 = ∅ ) ) )
64 58 61 63 3jaod ( 𝑦 ∈ ω → ( ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦 ) → ( 𝑦 = 𝑦𝑦 = ∅ ) ) )
65 57 64 mpd ( 𝑦 ∈ ω → ( 𝑦 = 𝑦𝑦 = ∅ ) )
66 65 orim1d ( 𝑦 ∈ ω → ( ( 𝑦 = 𝑦𝑦 = suc 𝑦 ) → ( 𝑦 = ∅ ∨ 𝑦 = suc 𝑦 ) ) )
67 53 66 mpd ( 𝑦 ∈ ω → ( 𝑦 = ∅ ∨ 𝑦 = suc 𝑦 ) )
68 67 ord ( 𝑦 ∈ ω → ( ¬ 𝑦 = ∅ → 𝑦 = suc 𝑦 ) )
69 68 adantl ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 = ∅ → 𝑦 = suc 𝑦 ) )
70 69 imp ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 = suc 𝑦 )
71 70 oveq2d ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o suc 𝑦 ) )
72 simpl ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → 𝑥 ∈ On )
73 72 adantr ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑥 ∈ On )
74 omcl ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ·o 𝑥 ) ∈ On )
75 15 73 74 sylancr ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ω ·o 𝑥 ) ∈ On )
76 nnon ( 𝑦 ∈ ω → 𝑦 ∈ On )
77 onuni ( 𝑦 ∈ On → 𝑦 ∈ On )
78 76 77 syl ( 𝑦 ∈ ω → 𝑦 ∈ On )
79 78 adantl ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → 𝑦 ∈ On )
80 79 adantr ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ∈ On )
81 oasuc ( ( ( ω ·o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ·o 𝑥 ) +o suc 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o 𝑦 ) )
82 75 80 81 syl2anc ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o suc 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o 𝑦 ) )
83 71 82 eqtrd ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o 𝑦 ) )
84 limeq ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o 𝑦 ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim suc ( ( ω ·o 𝑥 ) +o 𝑦 ) ) )
85 83 84 syl ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim suc ( ( ω ·o 𝑥 ) +o 𝑦 ) ) )
86 50 85 mtbird ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) )
87 86 ex ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 = ∅ → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) )
88 47 87 jaod ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) )
89 88 con2d ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) → ¬ ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) ) )
90 anor ( ( ∅ ∈ 𝑥𝑦 = ∅ ) ↔ ¬ ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) )
91 89 90 imbitrrdi ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) → ( ∅ ∈ 𝑥𝑦 = ∅ ) ) )
92 25 91 syl9 ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim 𝐴 → ( ∅ ∈ 𝑥𝑦 = ∅ ) ) ) )
93 92 com13 ( Lim 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ∅ ∈ 𝑥𝑦 = ∅ ) ) ) )
94 93 adantl ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ∅ ∈ 𝑥𝑦 = ∅ ) ) ) )
95 94 3imp ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( ∅ ∈ 𝑥𝑦 = ∅ ) )
96 simp2 ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) )
97 96 72 syl ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → 𝑥 ∈ On )
98 simpl ( ( ∅ ∈ 𝑥𝑦 = ∅ ) → ∅ ∈ 𝑥 )
99 97 98 anim12i ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) )
100 ondif1 ( 𝑥 ∈ ( On ∖ 1o ) ↔ ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) )
101 99 100 sylibr ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → 𝑥 ∈ ( On ∖ 1o ) )
102 simpr ( ( ∅ ∈ 𝑥𝑦 = ∅ ) → 𝑦 = ∅ )
103 102 oveq2d ( ( ∅ ∈ 𝑥𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o ∅ ) )
104 103 adantl ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o ∅ ) )
105 simpl3 ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 )
106 15 72 74 sylancr ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) ∈ On )
107 oa0 ( ( ω ·o 𝑥 ) ∈ On → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) )
108 96 106 107 3syl ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) )
109 108 adantr ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) )
110 104 105 109 3eqtr3d ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → 𝐴 = ( ω ·o 𝑥 ) )
111 101 110 jca ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥𝑦 = ∅ ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) )
112 95 111 mpdan ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) )
113 112 3exp ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) )
114 113 expdimp ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ω → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) )
115 114 rexlimdv ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ 𝑥 ∈ On ) → ( ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) )
116 115 expimpd ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) )
117 116 reximdv2 ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) )
118 23 117 mpd ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) )
119 simpr ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → 𝐴 = ( ω ·o 𝑥 ) )
120 eldifi ( 𝑥 ∈ ( On ∖ 1o ) → 𝑥 ∈ On )
121 15 120 74 sylancr ( 𝑥 ∈ ( On ∖ 1o ) → ( ω ·o 𝑥 ) ∈ On )
122 121 adantr ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( ω ·o 𝑥 ) ∈ On )
123 119 122 eqeltrd ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → 𝐴 ∈ On )
124 limom Lim ω
125 15 124 pm3.2i ( ω ∈ On ∧ Lim ω )
126 omlimcl2 ( ( ( 𝑥 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) ∧ ∅ ∈ 𝑥 ) → Lim ( ω ·o 𝑥 ) )
127 125 126 mpanl2 ( ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) → Lim ( ω ·o 𝑥 ) )
128 100 127 sylbi ( 𝑥 ∈ ( On ∖ 1o ) → Lim ( ω ·o 𝑥 ) )
129 128 adantr ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → Lim ( ω ·o 𝑥 ) )
130 limeq ( 𝐴 = ( ω ·o 𝑥 ) → ( Lim 𝐴 ↔ Lim ( ω ·o 𝑥 ) ) )
131 130 adantl ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( Lim 𝐴 ↔ Lim ( ω ·o 𝑥 ) ) )
132 129 131 mpbird ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → Lim 𝐴 )
133 123 132 jca ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) )
134 133 rexlimiva ( ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) )
135 118 134 impbii ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ↔ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) )
136 135 orbi2i ( ( 𝐴 = On ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) )
137 8 13 136 3bitr2i ( Lim 𝐴 ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) )