| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
| 2 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
| 3 |
2
|
biimpi |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
| 4 |
3
|
orcomd |
⊢ ( Ord 𝐴 → ( 𝐴 = On ∨ 𝐴 ∈ On ) ) |
| 5 |
1 4
|
syl |
⊢ ( Lim 𝐴 → ( 𝐴 = On ∨ 𝐴 ∈ On ) ) |
| 6 |
5
|
pm4.71ri |
⊢ ( Lim 𝐴 ↔ ( ( 𝐴 = On ∨ 𝐴 ∈ On ) ∧ Lim 𝐴 ) ) |
| 7 |
|
andir |
⊢ ( ( ( 𝐴 = On ∨ 𝐴 ∈ On ) ∧ Lim 𝐴 ) ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( Lim 𝐴 ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ) |
| 9 |
|
limon |
⊢ Lim On |
| 10 |
|
limeq |
⊢ ( 𝐴 = On → ( Lim 𝐴 ↔ Lim On ) ) |
| 11 |
9 10
|
mpbiri |
⊢ ( 𝐴 = On → Lim 𝐴 ) |
| 12 |
11
|
pm4.71i |
⊢ ( 𝐴 = On ↔ ( 𝐴 = On ∧ Lim 𝐴 ) ) |
| 13 |
12
|
orbi1i |
⊢ ( ( 𝐴 = On ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
| 15 |
|
omelon |
⊢ ω ∈ On |
| 16 |
15
|
a1i |
⊢ ( 𝐴 ∈ On → ω ∈ On ) |
| 17 |
|
id |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ On ) |
| 18 |
|
peano1 |
⊢ ∅ ∈ ω |
| 19 |
18
|
ne0ii |
⊢ ω ≠ ∅ |
| 20 |
19
|
a1i |
⊢ ( 𝐴 ∈ On → ω ≠ ∅ ) |
| 21 |
16 17 20
|
3jca |
⊢ ( 𝐴 ∈ On → ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) ) |
| 22 |
|
omeulem1 |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) |
| 23 |
14 21 22
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) |
| 24 |
|
limeq |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝐴 ) ) |
| 25 |
24
|
biimprd |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( Lim 𝐴 → Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
| 26 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑦 ∈ ω ) |
| 27 |
|
nnlim |
⊢ ( 𝑦 ∈ ω → ¬ Lim 𝑦 ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ¬ Lim 𝑦 ) |
| 29 |
|
on0eln0 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ 𝑥 ≠ ∅ ) ) |
| 30 |
29
|
biimprd |
⊢ ( 𝑥 ∈ On → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) ) |
| 31 |
30
|
necon1bd |
⊢ ( 𝑥 ∈ On → ( ¬ ∅ ∈ 𝑥 → 𝑥 = ∅ ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ ∅ ∈ 𝑥 → 𝑥 = ∅ ) ) |
| 33 |
32
|
imp |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑥 = ∅ ) |
| 34 |
33 26
|
jca |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) ) |
| 35 |
|
simpl |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → 𝑥 = ∅ ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) = ( ω ·o ∅ ) ) |
| 37 |
|
om0 |
⊢ ( ω ∈ On → ( ω ·o ∅ ) = ∅ ) |
| 38 |
15 37
|
mp1i |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o ∅ ) = ∅ ) |
| 39 |
36 38
|
eqtrd |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) = ∅ ) |
| 40 |
39
|
oveq1d |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ∅ +o 𝑦 ) ) |
| 41 |
|
nna0r |
⊢ ( 𝑦 ∈ ω → ( ∅ +o 𝑦 ) = 𝑦 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ∅ +o 𝑦 ) = 𝑦 ) |
| 43 |
40 42
|
eqtrd |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝑦 ) |
| 44 |
|
limeq |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝑦 → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝑦 ) ) |
| 45 |
34 43 44
|
3syl |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝑦 ) ) |
| 46 |
28 45
|
mtbird |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) |
| 47 |
46
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ ∅ ∈ 𝑥 → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
| 48 |
|
ovex |
⊢ ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ∈ V |
| 49 |
|
nlimsucg |
⊢ ( ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ∈ V → ¬ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
| 50 |
48 49
|
mp1i |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ¬ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
| 51 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
| 52 |
|
orduniorsuc |
⊢ ( Ord 𝑦 → ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) ) |
| 53 |
51 52
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) ) |
| 54 |
|
3ianor |
⊢ ( ¬ ( Ord 𝑦 ∧ 𝑦 ≠ ∅ ∧ 𝑦 = ∪ 𝑦 ) ↔ ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) ) |
| 55 |
|
df-lim |
⊢ ( Lim 𝑦 ↔ ( Ord 𝑦 ∧ 𝑦 ≠ ∅ ∧ 𝑦 = ∪ 𝑦 ) ) |
| 56 |
54 55
|
xchnxbir |
⊢ ( ¬ Lim 𝑦 ↔ ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) ) |
| 57 |
27 56
|
sylib |
⊢ ( 𝑦 ∈ ω → ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) ) |
| 58 |
51
|
pm2.24d |
⊢ ( 𝑦 ∈ ω → ( ¬ Ord 𝑦 → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
| 59 |
|
nne |
⊢ ( ¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅ ) |
| 60 |
59
|
biimpi |
⊢ ( ¬ 𝑦 ≠ ∅ → 𝑦 = ∅ ) |
| 61 |
60
|
a1i13 |
⊢ ( 𝑦 ∈ ω → ( ¬ 𝑦 ≠ ∅ → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
| 62 |
|
pm2.21 |
⊢ ( ¬ 𝑦 = ∪ 𝑦 → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) |
| 63 |
62
|
a1i |
⊢ ( 𝑦 ∈ ω → ( ¬ 𝑦 = ∪ 𝑦 → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
| 64 |
58 61 63
|
3jaod |
⊢ ( 𝑦 ∈ ω → ( ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
| 65 |
57 64
|
mpd |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) |
| 66 |
65
|
orim1d |
⊢ ( 𝑦 ∈ ω → ( ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) → ( 𝑦 = ∅ ∨ 𝑦 = suc ∪ 𝑦 ) ) ) |
| 67 |
53 66
|
mpd |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∅ ∨ 𝑦 = suc ∪ 𝑦 ) ) |
| 68 |
67
|
ord |
⊢ ( 𝑦 ∈ ω → ( ¬ 𝑦 = ∅ → 𝑦 = suc ∪ 𝑦 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 = ∅ → 𝑦 = suc ∪ 𝑦 ) ) |
| 70 |
69
|
imp |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 = suc ∪ 𝑦 ) |
| 71 |
70
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o suc ∪ 𝑦 ) ) |
| 72 |
|
simpl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → 𝑥 ∈ On ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑥 ∈ On ) |
| 74 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ·o 𝑥 ) ∈ On ) |
| 75 |
15 73 74
|
sylancr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ω ·o 𝑥 ) ∈ On ) |
| 76 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
| 77 |
|
onuni |
⊢ ( 𝑦 ∈ On → ∪ 𝑦 ∈ On ) |
| 78 |
76 77
|
syl |
⊢ ( 𝑦 ∈ ω → ∪ 𝑦 ∈ On ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ∪ 𝑦 ∈ On ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ∪ 𝑦 ∈ On ) |
| 81 |
|
oasuc |
⊢ ( ( ( ω ·o 𝑥 ) ∈ On ∧ ∪ 𝑦 ∈ On ) → ( ( ω ·o 𝑥 ) +o suc ∪ 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
| 82 |
75 80 81
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o suc ∪ 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
| 83 |
71 82
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
| 84 |
|
limeq |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) ) |
| 86 |
50 85
|
mtbird |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) |
| 87 |
86
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 = ∅ → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
| 88 |
47 87
|
jaod |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
| 89 |
88
|
con2d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) → ¬ ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) ) ) |
| 90 |
|
anor |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ↔ ¬ ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) ) |
| 91 |
89 90
|
imbitrrdi |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) |
| 92 |
25 91
|
syl9 |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim 𝐴 → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) ) |
| 93 |
92
|
com13 |
⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) ) |
| 95 |
94
|
3imp |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) |
| 96 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ) |
| 97 |
96 72
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → 𝑥 ∈ On ) |
| 98 |
|
simpl |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) → ∅ ∈ 𝑥 ) |
| 99 |
97 98
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) ) |
| 100 |
|
ondif1 |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) ↔ ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) ) |
| 101 |
99 100
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → 𝑥 ∈ ( On ∖ 1o ) ) |
| 102 |
|
simpr |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) |
| 103 |
102
|
oveq2d |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o ∅ ) ) |
| 104 |
103
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o ∅ ) ) |
| 105 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) |
| 106 |
15 72 74
|
sylancr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) ∈ On ) |
| 107 |
|
oa0 |
⊢ ( ( ω ·o 𝑥 ) ∈ On → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) ) |
| 108 |
96 106 107
|
3syl |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) ) |
| 110 |
104 105 109
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → 𝐴 = ( ω ·o 𝑥 ) ) |
| 111 |
101 110
|
jca |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) |
| 112 |
95 111
|
mpdan |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) |
| 113 |
112
|
3exp |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) ) |
| 114 |
113
|
expdimp |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ω → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) ) |
| 115 |
114
|
rexlimdv |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ 𝑥 ∈ On ) → ( ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) |
| 116 |
115
|
expimpd |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) |
| 117 |
116
|
reximdv2 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) ) |
| 118 |
23 117
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) |
| 119 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → 𝐴 = ( ω ·o 𝑥 ) ) |
| 120 |
|
eldifi |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → 𝑥 ∈ On ) |
| 121 |
15 120 74
|
sylancr |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → ( ω ·o 𝑥 ) ∈ On ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( ω ·o 𝑥 ) ∈ On ) |
| 123 |
119 122
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → 𝐴 ∈ On ) |
| 124 |
|
limom |
⊢ Lim ω |
| 125 |
15 124
|
pm3.2i |
⊢ ( ω ∈ On ∧ Lim ω ) |
| 126 |
|
omlimcl2 |
⊢ ( ( ( 𝑥 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) ∧ ∅ ∈ 𝑥 ) → Lim ( ω ·o 𝑥 ) ) |
| 127 |
125 126
|
mpanl2 |
⊢ ( ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) → Lim ( ω ·o 𝑥 ) ) |
| 128 |
100 127
|
sylbi |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → Lim ( ω ·o 𝑥 ) ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → Lim ( ω ·o 𝑥 ) ) |
| 130 |
|
limeq |
⊢ ( 𝐴 = ( ω ·o 𝑥 ) → ( Lim 𝐴 ↔ Lim ( ω ·o 𝑥 ) ) ) |
| 131 |
130
|
adantl |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( Lim 𝐴 ↔ Lim ( ω ·o 𝑥 ) ) ) |
| 132 |
129 131
|
mpbird |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → Lim 𝐴 ) |
| 133 |
123 132
|
jca |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) |
| 134 |
133
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) |
| 135 |
118 134
|
impbii |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ↔ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) |
| 136 |
135
|
orbi2i |
⊢ ( ( 𝐴 = On ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) ) |
| 137 |
8 13 136
|
3bitr2i |
⊢ ( Lim 𝐴 ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) ) |