Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
2 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
3 |
2
|
biimpi |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
4 |
3
|
orcomd |
⊢ ( Ord 𝐴 → ( 𝐴 = On ∨ 𝐴 ∈ On ) ) |
5 |
1 4
|
syl |
⊢ ( Lim 𝐴 → ( 𝐴 = On ∨ 𝐴 ∈ On ) ) |
6 |
5
|
pm4.71ri |
⊢ ( Lim 𝐴 ↔ ( ( 𝐴 = On ∨ 𝐴 ∈ On ) ∧ Lim 𝐴 ) ) |
7 |
|
andir |
⊢ ( ( ( 𝐴 = On ∨ 𝐴 ∈ On ) ∧ Lim 𝐴 ) ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( Lim 𝐴 ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ) |
9 |
|
limon |
⊢ Lim On |
10 |
|
limeq |
⊢ ( 𝐴 = On → ( Lim 𝐴 ↔ Lim On ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝐴 = On → Lim 𝐴 ) |
12 |
11
|
pm4.71i |
⊢ ( 𝐴 = On ↔ ( 𝐴 = On ∧ Lim 𝐴 ) ) |
13 |
12
|
orbi1i |
⊢ ( ( 𝐴 = On ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ↔ ( ( 𝐴 = On ∧ Lim 𝐴 ) ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
15 |
|
omelon |
⊢ ω ∈ On |
16 |
15
|
a1i |
⊢ ( 𝐴 ∈ On → ω ∈ On ) |
17 |
|
id |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ On ) |
18 |
|
peano1 |
⊢ ∅ ∈ ω |
19 |
18
|
ne0ii |
⊢ ω ≠ ∅ |
20 |
19
|
a1i |
⊢ ( 𝐴 ∈ On → ω ≠ ∅ ) |
21 |
16 17 20
|
3jca |
⊢ ( 𝐴 ∈ On → ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) ) |
22 |
|
omeulem1 |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) |
23 |
14 21 22
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) |
24 |
|
limeq |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝐴 ) ) |
25 |
24
|
biimprd |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( Lim 𝐴 → Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑦 ∈ ω ) |
27 |
|
nnlim |
⊢ ( 𝑦 ∈ ω → ¬ Lim 𝑦 ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ¬ Lim 𝑦 ) |
29 |
|
on0eln0 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ 𝑥 ≠ ∅ ) ) |
30 |
29
|
biimprd |
⊢ ( 𝑥 ∈ On → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) ) |
31 |
30
|
necon1bd |
⊢ ( 𝑥 ∈ On → ( ¬ ∅ ∈ 𝑥 → 𝑥 = ∅ ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ ∅ ∈ 𝑥 → 𝑥 = ∅ ) ) |
33 |
32
|
imp |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → 𝑥 = ∅ ) |
34 |
33 26
|
jca |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) ) |
35 |
|
simpl |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → 𝑥 = ∅ ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) = ( ω ·o ∅ ) ) |
37 |
|
om0 |
⊢ ( ω ∈ On → ( ω ·o ∅ ) = ∅ ) |
38 |
15 37
|
mp1i |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o ∅ ) = ∅ ) |
39 |
36 38
|
eqtrd |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) = ∅ ) |
40 |
39
|
oveq1d |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ∅ +o 𝑦 ) ) |
41 |
|
nna0r |
⊢ ( 𝑦 ∈ ω → ( ∅ +o 𝑦 ) = 𝑦 ) |
42 |
41
|
adantl |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ∅ +o 𝑦 ) = 𝑦 ) |
43 |
40 42
|
eqtrd |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 ∈ ω ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝑦 ) |
44 |
|
limeq |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝑦 → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝑦 ) ) |
45 |
34 43 44
|
3syl |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim 𝑦 ) ) |
46 |
28 45
|
mtbird |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ ∅ ∈ 𝑥 ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) |
47 |
46
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ ∅ ∈ 𝑥 → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
48 |
|
ovex |
⊢ ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ∈ V |
49 |
|
nlimsucg |
⊢ ( ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ∈ V → ¬ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
50 |
48 49
|
mp1i |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ¬ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
51 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
52 |
|
orduniorsuc |
⊢ ( Ord 𝑦 → ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) ) |
53 |
51 52
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) ) |
54 |
|
3ianor |
⊢ ( ¬ ( Ord 𝑦 ∧ 𝑦 ≠ ∅ ∧ 𝑦 = ∪ 𝑦 ) ↔ ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) ) |
55 |
|
df-lim |
⊢ ( Lim 𝑦 ↔ ( Ord 𝑦 ∧ 𝑦 ≠ ∅ ∧ 𝑦 = ∪ 𝑦 ) ) |
56 |
54 55
|
xchnxbir |
⊢ ( ¬ Lim 𝑦 ↔ ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) ) |
57 |
27 56
|
sylib |
⊢ ( 𝑦 ∈ ω → ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) ) |
58 |
51
|
pm2.24d |
⊢ ( 𝑦 ∈ ω → ( ¬ Ord 𝑦 → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
59 |
|
nne |
⊢ ( ¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅ ) |
60 |
59
|
biimpi |
⊢ ( ¬ 𝑦 ≠ ∅ → 𝑦 = ∅ ) |
61 |
60
|
a1i13 |
⊢ ( 𝑦 ∈ ω → ( ¬ 𝑦 ≠ ∅ → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
62 |
|
pm2.21 |
⊢ ( ¬ 𝑦 = ∪ 𝑦 → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) |
63 |
62
|
a1i |
⊢ ( 𝑦 ∈ ω → ( ¬ 𝑦 = ∪ 𝑦 → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
64 |
58 61 63
|
3jaod |
⊢ ( 𝑦 ∈ ω → ( ( ¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = ∪ 𝑦 ) → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) ) |
65 |
57 64
|
mpd |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∪ 𝑦 → 𝑦 = ∅ ) ) |
66 |
65
|
orim1d |
⊢ ( 𝑦 ∈ ω → ( ( 𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦 ) → ( 𝑦 = ∅ ∨ 𝑦 = suc ∪ 𝑦 ) ) ) |
67 |
53 66
|
mpd |
⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∅ ∨ 𝑦 = suc ∪ 𝑦 ) ) |
68 |
67
|
ord |
⊢ ( 𝑦 ∈ ω → ( ¬ 𝑦 = ∅ → 𝑦 = suc ∪ 𝑦 ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 = ∅ → 𝑦 = suc ∪ 𝑦 ) ) |
70 |
69
|
imp |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 = suc ∪ 𝑦 ) |
71 |
70
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o suc ∪ 𝑦 ) ) |
72 |
|
simpl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → 𝑥 ∈ On ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → 𝑥 ∈ On ) |
74 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ·o 𝑥 ) ∈ On ) |
75 |
15 73 74
|
sylancr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ω ·o 𝑥 ) ∈ On ) |
76 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
77 |
|
onuni |
⊢ ( 𝑦 ∈ On → ∪ 𝑦 ∈ On ) |
78 |
76 77
|
syl |
⊢ ( 𝑦 ∈ ω → ∪ 𝑦 ∈ On ) |
79 |
78
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ∪ 𝑦 ∈ On ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ∪ 𝑦 ∈ On ) |
81 |
|
oasuc |
⊢ ( ( ( ω ·o 𝑥 ) ∈ On ∧ ∪ 𝑦 ∈ On ) → ( ( ω ·o 𝑥 ) +o suc ∪ 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
82 |
75 80 81
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o suc ∪ 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
83 |
71 82
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) |
84 |
|
limeq |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) ) |
85 |
83 84
|
syl |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ↔ Lim suc ( ( ω ·o 𝑥 ) +o ∪ 𝑦 ) ) ) |
86 |
50 85
|
mtbird |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ¬ 𝑦 = ∅ ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) |
87 |
86
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 = ∅ → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
88 |
47 87
|
jaod |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) → ¬ Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) ) ) |
89 |
88
|
con2d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) → ¬ ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) ) ) |
90 |
|
anor |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ↔ ¬ ( ¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅ ) ) |
91 |
89 90
|
imbitrrdi |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim ( ( ω ·o 𝑥 ) +o 𝑦 ) → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) |
92 |
25 91
|
syl9 |
⊢ ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( Lim 𝐴 → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) ) |
93 |
92
|
com13 |
⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) ) ) |
95 |
94
|
3imp |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) |
96 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ) |
97 |
96 72
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → 𝑥 ∈ On ) |
98 |
|
simpl |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) → ∅ ∈ 𝑥 ) |
99 |
97 98
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) ) |
100 |
|
ondif1 |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) ↔ ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) ) |
101 |
99 100
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → 𝑥 ∈ ( On ∖ 1o ) ) |
102 |
|
simpr |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) |
103 |
102
|
oveq2d |
⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o ∅ ) ) |
104 |
103
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = ( ( ω ·o 𝑥 ) +o ∅ ) ) |
105 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) |
106 |
15 72 74
|
sylancr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ω ·o 𝑥 ) ∈ On ) |
107 |
|
oa0 |
⊢ ( ( ω ·o 𝑥 ) ∈ On → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) ) |
108 |
96 106 107
|
3syl |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) ) |
109 |
108
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( ( ω ·o 𝑥 ) +o ∅ ) = ( ω ·o 𝑥 ) ) |
110 |
104 105 109
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → 𝐴 = ( ω ·o 𝑥 ) ) |
111 |
101 110
|
jca |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) ∧ ( ∅ ∈ 𝑥 ∧ 𝑦 = ∅ ) ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) |
112 |
95 111
|
mpdan |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) ∧ ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) |
113 |
112
|
3exp |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ ω ) → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) ) |
114 |
113
|
expdimp |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ω → ( ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) ) |
115 |
114
|
rexlimdv |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ∧ 𝑥 ∈ On ) → ( ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) |
116 |
115
|
expimpd |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ( 𝑥 ∈ On ∧ ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) ) ) |
117 |
116
|
reximdv2 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ω ( ( ω ·o 𝑥 ) +o 𝑦 ) = 𝐴 → ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) ) |
118 |
23 117
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) |
119 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → 𝐴 = ( ω ·o 𝑥 ) ) |
120 |
|
eldifi |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → 𝑥 ∈ On ) |
121 |
15 120 74
|
sylancr |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → ( ω ·o 𝑥 ) ∈ On ) |
122 |
121
|
adantr |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( ω ·o 𝑥 ) ∈ On ) |
123 |
119 122
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → 𝐴 ∈ On ) |
124 |
|
limom |
⊢ Lim ω |
125 |
15 124
|
pm3.2i |
⊢ ( ω ∈ On ∧ Lim ω ) |
126 |
|
omlimcl2 |
⊢ ( ( ( 𝑥 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) ∧ ∅ ∈ 𝑥 ) → Lim ( ω ·o 𝑥 ) ) |
127 |
125 126
|
mpanl2 |
⊢ ( ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) → Lim ( ω ·o 𝑥 ) ) |
128 |
100 127
|
sylbi |
⊢ ( 𝑥 ∈ ( On ∖ 1o ) → Lim ( ω ·o 𝑥 ) ) |
129 |
128
|
adantr |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → Lim ( ω ·o 𝑥 ) ) |
130 |
|
limeq |
⊢ ( 𝐴 = ( ω ·o 𝑥 ) → ( Lim 𝐴 ↔ Lim ( ω ·o 𝑥 ) ) ) |
131 |
130
|
adantl |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( Lim 𝐴 ↔ Lim ( ω ·o 𝑥 ) ) ) |
132 |
129 131
|
mpbird |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → Lim 𝐴 ) |
133 |
123 132
|
jca |
⊢ ( ( 𝑥 ∈ ( On ∖ 1o ) ∧ 𝐴 = ( ω ·o 𝑥 ) ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) |
134 |
133
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) |
135 |
118 134
|
impbii |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) ↔ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) |
136 |
135
|
orbi2i |
⊢ ( ( 𝐴 = On ∨ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) ) |
137 |
8 13 136
|
3bitr2i |
⊢ ( Lim 𝐴 ↔ ( 𝐴 = On ∨ ∃ 𝑥 ∈ ( On ∖ 1o ) 𝐴 = ( ω ·o 𝑥 ) ) ) |