Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
|
2 |
|
ordeleqon |
|
3 |
2
|
biimpi |
|
4 |
3
|
orcomd |
|
5 |
1 4
|
syl |
|
6 |
5
|
pm4.71ri |
|
7 |
|
andir |
|
8 |
6 7
|
bitri |
|
9 |
|
limon |
|
10 |
|
limeq |
|
11 |
9 10
|
mpbiri |
|
12 |
11
|
pm4.71i |
|
13 |
12
|
orbi1i |
|
14 |
|
simpl |
|
15 |
|
omelon |
|
16 |
15
|
a1i |
|
17 |
|
id |
|
18 |
|
peano1 |
|
19 |
18
|
ne0ii |
|
20 |
19
|
a1i |
|
21 |
16 17 20
|
3jca |
|
22 |
|
omeulem1 |
|
23 |
14 21 22
|
3syl |
|
24 |
|
limeq |
|
25 |
24
|
biimprd |
|
26 |
|
simplr |
|
27 |
|
nnlim |
|
28 |
26 27
|
syl |
|
29 |
|
on0eln0 |
|
30 |
29
|
biimprd |
|
31 |
30
|
necon1bd |
|
32 |
31
|
adantr |
|
33 |
32
|
imp |
|
34 |
33 26
|
jca |
|
35 |
|
simpl |
|
36 |
35
|
oveq2d |
|
37 |
|
om0 |
|
38 |
15 37
|
mp1i |
|
39 |
36 38
|
eqtrd |
|
40 |
39
|
oveq1d |
|
41 |
|
nna0r |
|
42 |
41
|
adantl |
|
43 |
40 42
|
eqtrd |
|
44 |
|
limeq |
|
45 |
34 43 44
|
3syl |
|
46 |
28 45
|
mtbird |
|
47 |
46
|
ex |
|
48 |
|
ovex |
|
49 |
|
nlimsucg |
|
50 |
48 49
|
mp1i |
|
51 |
|
nnord |
|
52 |
|
orduniorsuc |
|
53 |
51 52
|
syl |
|
54 |
|
3ianor |
|
55 |
|
df-lim |
|
56 |
54 55
|
xchnxbir |
|
57 |
27 56
|
sylib |
|
58 |
51
|
pm2.24d |
|
59 |
|
nne |
|
60 |
59
|
biimpi |
|
61 |
60
|
a1i13 |
|
62 |
|
pm2.21 |
|
63 |
62
|
a1i |
|
64 |
58 61 63
|
3jaod |
|
65 |
57 64
|
mpd |
|
66 |
65
|
orim1d |
|
67 |
53 66
|
mpd |
|
68 |
67
|
ord |
|
69 |
68
|
adantl |
|
70 |
69
|
imp |
|
71 |
70
|
oveq2d |
|
72 |
|
simpl |
|
73 |
72
|
adantr |
|
74 |
|
omcl |
|
75 |
15 73 74
|
sylancr |
|
76 |
|
nnon |
|
77 |
|
onuni |
|
78 |
76 77
|
syl |
|
79 |
78
|
adantl |
|
80 |
79
|
adantr |
|
81 |
|
oasuc |
|
82 |
75 80 81
|
syl2anc |
|
83 |
71 82
|
eqtrd |
|
84 |
|
limeq |
|
85 |
83 84
|
syl |
|
86 |
50 85
|
mtbird |
|
87 |
86
|
ex |
|
88 |
47 87
|
jaod |
|
89 |
88
|
con2d |
|
90 |
|
anor |
|
91 |
89 90
|
imbitrrdi |
|
92 |
25 91
|
syl9 |
|
93 |
92
|
com13 |
|
94 |
93
|
adantl |
|
95 |
94
|
3imp |
|
96 |
|
simp2 |
|
97 |
96 72
|
syl |
|
98 |
|
simpl |
|
99 |
97 98
|
anim12i |
|
100 |
|
ondif1 |
|
101 |
99 100
|
sylibr |
|
102 |
|
simpr |
|
103 |
102
|
oveq2d |
|
104 |
103
|
adantl |
|
105 |
|
simpl3 |
|
106 |
15 72 74
|
sylancr |
|
107 |
|
oa0 |
|
108 |
96 106 107
|
3syl |
|
109 |
108
|
adantr |
|
110 |
104 105 109
|
3eqtr3d |
|
111 |
101 110
|
jca |
|
112 |
95 111
|
mpdan |
|
113 |
112
|
3exp |
|
114 |
113
|
expdimp |
|
115 |
114
|
rexlimdv |
|
116 |
115
|
expimpd |
|
117 |
116
|
reximdv2 |
|
118 |
23 117
|
mpd |
|
119 |
|
simpr |
|
120 |
|
eldifi |
|
121 |
15 120 74
|
sylancr |
|
122 |
121
|
adantr |
|
123 |
119 122
|
eqeltrd |
|
124 |
|
limom |
|
125 |
15 124
|
pm3.2i |
|
126 |
|
omlimcl2 |
|
127 |
125 126
|
mpanl2 |
|
128 |
100 127
|
sylbi |
|
129 |
128
|
adantr |
|
130 |
|
limeq |
|
131 |
130
|
adantl |
|
132 |
129 131
|
mpbird |
|
133 |
123 132
|
jca |
|
134 |
133
|
rexlimiva |
|
135 |
118 134
|
impbii |
|
136 |
135
|
orbi2i |
|
137 |
8 13 136
|
3bitr2i |
|