Metamath Proof Explorer


Theorem dflim5

Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion dflim5 Lim A A = On x On 1 𝑜 A = ω 𝑜 x

Proof

Step Hyp Ref Expression
1 limord Lim A Ord A
2 ordeleqon Ord A A On A = On
3 2 biimpi Ord A A On A = On
4 3 orcomd Ord A A = On A On
5 1 4 syl Lim A A = On A On
6 5 pm4.71ri Lim A A = On A On Lim A
7 andir A = On A On Lim A A = On Lim A A On Lim A
8 6 7 bitri Lim A A = On Lim A A On Lim A
9 limon Lim On
10 limeq A = On Lim A Lim On
11 9 10 mpbiri A = On Lim A
12 11 pm4.71i A = On A = On Lim A
13 12 orbi1i A = On A On Lim A A = On Lim A A On Lim A
14 simpl A On Lim A A On
15 omelon ω On
16 15 a1i A On ω On
17 id A On A On
18 peano1 ω
19 18 ne0ii ω
20 19 a1i A On ω
21 16 17 20 3jca A On ω On A On ω
22 omeulem1 ω On A On ω x On y ω ω 𝑜 x + 𝑜 y = A
23 14 21 22 3syl A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A
24 limeq ω 𝑜 x + 𝑜 y = A Lim ω 𝑜 x + 𝑜 y Lim A
25 24 biimprd ω 𝑜 x + 𝑜 y = A Lim A Lim ω 𝑜 x + 𝑜 y
26 simplr x On y ω ¬ x y ω
27 nnlim y ω ¬ Lim y
28 26 27 syl x On y ω ¬ x ¬ Lim y
29 on0eln0 x On x x
30 29 biimprd x On x x
31 30 necon1bd x On ¬ x x =
32 31 adantr x On y ω ¬ x x =
33 32 imp x On y ω ¬ x x =
34 33 26 jca x On y ω ¬ x x = y ω
35 simpl x = y ω x =
36 35 oveq2d x = y ω ω 𝑜 x = ω 𝑜
37 om0 ω On ω 𝑜 =
38 15 37 mp1i x = y ω ω 𝑜 =
39 36 38 eqtrd x = y ω ω 𝑜 x =
40 39 oveq1d x = y ω ω 𝑜 x + 𝑜 y = + 𝑜 y
41 nna0r y ω + 𝑜 y = y
42 41 adantl x = y ω + 𝑜 y = y
43 40 42 eqtrd x = y ω ω 𝑜 x + 𝑜 y = y
44 limeq ω 𝑜 x + 𝑜 y = y Lim ω 𝑜 x + 𝑜 y Lim y
45 34 43 44 3syl x On y ω ¬ x Lim ω 𝑜 x + 𝑜 y Lim y
46 28 45 mtbird x On y ω ¬ x ¬ Lim ω 𝑜 x + 𝑜 y
47 46 ex x On y ω ¬ x ¬ Lim ω 𝑜 x + 𝑜 y
48 ovex ω 𝑜 x + 𝑜 y V
49 nlimsucg ω 𝑜 x + 𝑜 y V ¬ Lim suc ω 𝑜 x + 𝑜 y
50 48 49 mp1i x On y ω ¬ y = ¬ Lim suc ω 𝑜 x + 𝑜 y
51 nnord y ω Ord y
52 orduniorsuc Ord y y = y y = suc y
53 51 52 syl y ω y = y y = suc y
54 3ianor ¬ Ord y y y = y ¬ Ord y ¬ y ¬ y = y
55 df-lim Lim y Ord y y y = y
56 54 55 xchnxbir ¬ Lim y ¬ Ord y ¬ y ¬ y = y
57 27 56 sylib y ω ¬ Ord y ¬ y ¬ y = y
58 51 pm2.24d y ω ¬ Ord y y = y y =
59 nne ¬ y y =
60 59 biimpi ¬ y y =
61 60 a1i13 y ω ¬ y y = y y =
62 pm2.21 ¬ y = y y = y y =
63 62 a1i y ω ¬ y = y y = y y =
64 58 61 63 3jaod y ω ¬ Ord y ¬ y ¬ y = y y = y y =
65 57 64 mpd y ω y = y y =
66 65 orim1d y ω y = y y = suc y y = y = suc y
67 53 66 mpd y ω y = y = suc y
68 67 ord y ω ¬ y = y = suc y
69 68 adantl x On y ω ¬ y = y = suc y
70 69 imp x On y ω ¬ y = y = suc y
71 70 oveq2d x On y ω ¬ y = ω 𝑜 x + 𝑜 y = ω 𝑜 x + 𝑜 suc y
72 simpl x On y ω x On
73 72 adantr x On y ω ¬ y = x On
74 omcl ω On x On ω 𝑜 x On
75 15 73 74 sylancr x On y ω ¬ y = ω 𝑜 x On
76 nnon y ω y On
77 onuni y On y On
78 76 77 syl y ω y On
79 78 adantl x On y ω y On
80 79 adantr x On y ω ¬ y = y On
81 oasuc ω 𝑜 x On y On ω 𝑜 x + 𝑜 suc y = suc ω 𝑜 x + 𝑜 y
82 75 80 81 syl2anc x On y ω ¬ y = ω 𝑜 x + 𝑜 suc y = suc ω 𝑜 x + 𝑜 y
83 71 82 eqtrd x On y ω ¬ y = ω 𝑜 x + 𝑜 y = suc ω 𝑜 x + 𝑜 y
84 limeq ω 𝑜 x + 𝑜 y = suc ω 𝑜 x + 𝑜 y Lim ω 𝑜 x + 𝑜 y Lim suc ω 𝑜 x + 𝑜 y
85 83 84 syl x On y ω ¬ y = Lim ω 𝑜 x + 𝑜 y Lim suc ω 𝑜 x + 𝑜 y
86 50 85 mtbird x On y ω ¬ y = ¬ Lim ω 𝑜 x + 𝑜 y
87 86 ex x On y ω ¬ y = ¬ Lim ω 𝑜 x + 𝑜 y
88 47 87 jaod x On y ω ¬ x ¬ y = ¬ Lim ω 𝑜 x + 𝑜 y
89 88 con2d x On y ω Lim ω 𝑜 x + 𝑜 y ¬ ¬ x ¬ y =
90 anor x y = ¬ ¬ x ¬ y =
91 89 90 imbitrrdi x On y ω Lim ω 𝑜 x + 𝑜 y x y =
92 25 91 syl9 ω 𝑜 x + 𝑜 y = A x On y ω Lim A x y =
93 92 com13 Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y =
94 93 adantl A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y =
95 94 3imp A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y =
96 simp2 A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On y ω
97 96 72 syl A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On
98 simpl x y = x
99 97 98 anim12i A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = x On x
100 ondif1 x On 1 𝑜 x On x
101 99 100 sylibr A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = x On 1 𝑜
102 simpr x y = y =
103 102 oveq2d x y = ω 𝑜 x + 𝑜 y = ω 𝑜 x + 𝑜
104 103 adantl A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = ω 𝑜 x + 𝑜 y = ω 𝑜 x + 𝑜
105 simpl3 A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = ω 𝑜 x + 𝑜 y = A
106 15 72 74 sylancr x On y ω ω 𝑜 x On
107 oa0 ω 𝑜 x On ω 𝑜 x + 𝑜 = ω 𝑜 x
108 96 106 107 3syl A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A ω 𝑜 x + 𝑜 = ω 𝑜 x
109 108 adantr A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = ω 𝑜 x + 𝑜 = ω 𝑜 x
110 104 105 109 3eqtr3d A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = A = ω 𝑜 x
111 101 110 jca A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x y = x On 1 𝑜 A = ω 𝑜 x
112 95 111 mpdan A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On 1 𝑜 A = ω 𝑜 x
113 112 3exp A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On 1 𝑜 A = ω 𝑜 x
114 113 expdimp A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On 1 𝑜 A = ω 𝑜 x
115 114 rexlimdv A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On 1 𝑜 A = ω 𝑜 x
116 115 expimpd A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On 1 𝑜 A = ω 𝑜 x
117 116 reximdv2 A On Lim A x On y ω ω 𝑜 x + 𝑜 y = A x On 1 𝑜 A = ω 𝑜 x
118 23 117 mpd A On Lim A x On 1 𝑜 A = ω 𝑜 x
119 simpr x On 1 𝑜 A = ω 𝑜 x A = ω 𝑜 x
120 eldifi x On 1 𝑜 x On
121 15 120 74 sylancr x On 1 𝑜 ω 𝑜 x On
122 121 adantr x On 1 𝑜 A = ω 𝑜 x ω 𝑜 x On
123 119 122 eqeltrd x On 1 𝑜 A = ω 𝑜 x A On
124 limom Lim ω
125 15 124 pm3.2i ω On Lim ω
126 omlimcl2 x On ω On Lim ω x Lim ω 𝑜 x
127 125 126 mpanl2 x On x Lim ω 𝑜 x
128 100 127 sylbi x On 1 𝑜 Lim ω 𝑜 x
129 128 adantr x On 1 𝑜 A = ω 𝑜 x Lim ω 𝑜 x
130 limeq A = ω 𝑜 x Lim A Lim ω 𝑜 x
131 130 adantl x On 1 𝑜 A = ω 𝑜 x Lim A Lim ω 𝑜 x
132 129 131 mpbird x On 1 𝑜 A = ω 𝑜 x Lim A
133 123 132 jca x On 1 𝑜 A = ω 𝑜 x A On Lim A
134 133 rexlimiva x On 1 𝑜 A = ω 𝑜 x A On Lim A
135 118 134 impbii A On Lim A x On 1 𝑜 A = ω 𝑜 x
136 135 orbi2i A = On A On Lim A A = On x On 1 𝑜 A = ω 𝑜 x
137 8 13 136 3bitr2i Lim A A = On x On 1 𝑜 A = ω 𝑜 x