| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limord |
|
| 2 |
|
ordeleqon |
|
| 3 |
2
|
biimpi |
|
| 4 |
3
|
orcomd |
|
| 5 |
1 4
|
syl |
|
| 6 |
5
|
pm4.71ri |
|
| 7 |
|
andir |
|
| 8 |
6 7
|
bitri |
|
| 9 |
|
limon |
|
| 10 |
|
limeq |
|
| 11 |
9 10
|
mpbiri |
|
| 12 |
11
|
pm4.71i |
|
| 13 |
12
|
orbi1i |
|
| 14 |
|
simpl |
|
| 15 |
|
omelon |
|
| 16 |
15
|
a1i |
|
| 17 |
|
id |
|
| 18 |
|
peano1 |
|
| 19 |
18
|
ne0ii |
|
| 20 |
19
|
a1i |
|
| 21 |
16 17 20
|
3jca |
|
| 22 |
|
omeulem1 |
|
| 23 |
14 21 22
|
3syl |
|
| 24 |
|
limeq |
|
| 25 |
24
|
biimprd |
|
| 26 |
|
simplr |
|
| 27 |
|
nnlim |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
on0eln0 |
|
| 30 |
29
|
biimprd |
|
| 31 |
30
|
necon1bd |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
imp |
|
| 34 |
33 26
|
jca |
|
| 35 |
|
simpl |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
om0 |
|
| 38 |
15 37
|
mp1i |
|
| 39 |
36 38
|
eqtrd |
|
| 40 |
39
|
oveq1d |
|
| 41 |
|
nna0r |
|
| 42 |
41
|
adantl |
|
| 43 |
40 42
|
eqtrd |
|
| 44 |
|
limeq |
|
| 45 |
34 43 44
|
3syl |
|
| 46 |
28 45
|
mtbird |
|
| 47 |
46
|
ex |
|
| 48 |
|
ovex |
|
| 49 |
|
nlimsucg |
|
| 50 |
48 49
|
mp1i |
|
| 51 |
|
nnord |
|
| 52 |
|
orduniorsuc |
|
| 53 |
51 52
|
syl |
|
| 54 |
|
3ianor |
|
| 55 |
|
df-lim |
|
| 56 |
54 55
|
xchnxbir |
|
| 57 |
27 56
|
sylib |
|
| 58 |
51
|
pm2.24d |
|
| 59 |
|
nne |
|
| 60 |
59
|
biimpi |
|
| 61 |
60
|
a1i13 |
|
| 62 |
|
pm2.21 |
|
| 63 |
62
|
a1i |
|
| 64 |
58 61 63
|
3jaod |
|
| 65 |
57 64
|
mpd |
|
| 66 |
65
|
orim1d |
|
| 67 |
53 66
|
mpd |
|
| 68 |
67
|
ord |
|
| 69 |
68
|
adantl |
|
| 70 |
69
|
imp |
|
| 71 |
70
|
oveq2d |
|
| 72 |
|
simpl |
|
| 73 |
72
|
adantr |
|
| 74 |
|
omcl |
|
| 75 |
15 73 74
|
sylancr |
|
| 76 |
|
nnon |
|
| 77 |
|
onuni |
|
| 78 |
76 77
|
syl |
|
| 79 |
78
|
adantl |
|
| 80 |
79
|
adantr |
|
| 81 |
|
oasuc |
|
| 82 |
75 80 81
|
syl2anc |
|
| 83 |
71 82
|
eqtrd |
|
| 84 |
|
limeq |
|
| 85 |
83 84
|
syl |
|
| 86 |
50 85
|
mtbird |
|
| 87 |
86
|
ex |
|
| 88 |
47 87
|
jaod |
|
| 89 |
88
|
con2d |
|
| 90 |
|
anor |
|
| 91 |
89 90
|
imbitrrdi |
|
| 92 |
25 91
|
syl9 |
|
| 93 |
92
|
com13 |
|
| 94 |
93
|
adantl |
|
| 95 |
94
|
3imp |
|
| 96 |
|
simp2 |
|
| 97 |
96 72
|
syl |
|
| 98 |
|
simpl |
|
| 99 |
97 98
|
anim12i |
|
| 100 |
|
ondif1 |
|
| 101 |
99 100
|
sylibr |
|
| 102 |
|
simpr |
|
| 103 |
102
|
oveq2d |
|
| 104 |
103
|
adantl |
|
| 105 |
|
simpl3 |
|
| 106 |
15 72 74
|
sylancr |
|
| 107 |
|
oa0 |
|
| 108 |
96 106 107
|
3syl |
|
| 109 |
108
|
adantr |
|
| 110 |
104 105 109
|
3eqtr3d |
|
| 111 |
101 110
|
jca |
|
| 112 |
95 111
|
mpdan |
|
| 113 |
112
|
3exp |
|
| 114 |
113
|
expdimp |
|
| 115 |
114
|
rexlimdv |
|
| 116 |
115
|
expimpd |
|
| 117 |
116
|
reximdv2 |
|
| 118 |
23 117
|
mpd |
|
| 119 |
|
simpr |
|
| 120 |
|
eldifi |
|
| 121 |
15 120 74
|
sylancr |
|
| 122 |
121
|
adantr |
|
| 123 |
119 122
|
eqeltrd |
|
| 124 |
|
limom |
|
| 125 |
15 124
|
pm3.2i |
|
| 126 |
|
omlimcl2 |
|
| 127 |
125 126
|
mpanl2 |
|
| 128 |
100 127
|
sylbi |
|
| 129 |
128
|
adantr |
|
| 130 |
|
limeq |
|
| 131 |
130
|
adantl |
|
| 132 |
129 131
|
mpbird |
|
| 133 |
123 132
|
jca |
|
| 134 |
133
|
rexlimiva |
|
| 135 |
118 134
|
impbii |
|
| 136 |
135
|
orbi2i |
|
| 137 |
8 13 136
|
3bitr2i |
|