Metamath Proof Explorer


Theorem omlimcl2

Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion omlimcl2 A On B C Lim B A Lim B 𝑜 A

Proof

Step Hyp Ref Expression
1 eloni A On Ord A
2 1 ad2antrr A On B C Lim B A Ord A
3 ne0i A A
4 3 adantl A On B C Lim B A A
5 id A = A A = A
6 df-lim Lim A Ord A A A = A
7 6 biimpri Ord A A A = A Lim A
8 2 4 5 7 syl2an3an A On B C Lim B A A = A Lim A
9 8 ex A On B C Lim B A A = A Lim A
10 limelon B C Lim B B On
11 10 ad3antlr A On B C Lim B A Lim A B On
12 simpll A On B C Lim B A A On
13 12 anim1i A On B C Lim B A Lim A A On Lim A
14 0ellim Lim B B
15 14 adantl B C Lim B B
16 15 ad3antlr A On B C Lim B A Lim A B
17 omlimcl B On A On Lim A B Lim B 𝑜 A
18 11 13 16 17 syl21anc A On B C Lim B A Lim A Lim B 𝑜 A
19 18 ex A On B C Lim B A Lim A Lim B 𝑜 A
20 9 19 syld A On B C Lim B A A = A Lim B 𝑜 A
21 onuni A On A On
22 21 10 anim12ci A On B C Lim B B On A On
23 omcl B On A On B 𝑜 A On
24 22 23 syl A On B C Lim B B 𝑜 A On
25 simpr A On B C Lim B B C Lim B
26 24 25 jca A On B C Lim B B 𝑜 A On B C Lim B
27 26 ad2antrr A On B C Lim B A A = suc A B 𝑜 A On B C Lim B
28 oalimcl B 𝑜 A On B C Lim B Lim B 𝑜 A + 𝑜 B
29 27 28 syl A On B C Lim B A A = suc A Lim B 𝑜 A + 𝑜 B
30 simpr A On B C Lim B A A = suc A A = suc A
31 30 oveq2d A On B C Lim B A A = suc A B 𝑜 A = B 𝑜 suc A
32 22 ad2antrr A On B C Lim B A A = suc A B On A On
33 omsuc B On A On B 𝑜 suc A = B 𝑜 A + 𝑜 B
34 32 33 syl A On B C Lim B A A = suc A B 𝑜 suc A = B 𝑜 A + 𝑜 B
35 31 34 eqtrd A On B C Lim B A A = suc A B 𝑜 A = B 𝑜 A + 𝑜 B
36 limeq B 𝑜 A = B 𝑜 A + 𝑜 B Lim B 𝑜 A Lim B 𝑜 A + 𝑜 B
37 35 36 syl A On B C Lim B A A = suc A Lim B 𝑜 A Lim B 𝑜 A + 𝑜 B
38 29 37 mpbird A On B C Lim B A A = suc A Lim B 𝑜 A
39 38 ex A On B C Lim B A A = suc A Lim B 𝑜 A
40 orduniorsuc Ord A A = A A = suc A
41 2 40 syl A On B C Lim B A A = A A = suc A
42 20 39 41 mpjaod A On B C Lim B A Lim B 𝑜 A