Metamath Proof Explorer


Theorem omlimcl

Description: The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)

Ref Expression
Assertion omlimcl AOnBCLimBALimA𝑜B

Proof

Step Hyp Ref Expression
1 limelon BCLimBBOn
2 omcl AOnBOnA𝑜BOn
3 eloni A𝑜BOnOrdA𝑜B
4 2 3 syl AOnBOnOrdA𝑜B
5 1 4 sylan2 AOnBCLimBOrdA𝑜B
6 5 adantr AOnBCLimBAOrdA𝑜B
7 0ellim LimBB
8 n0i B¬B=
9 7 8 syl LimB¬B=
10 n0i A¬A=
11 9 10 anim12ci LimBA¬A=¬B=
12 11 adantll BCLimBA¬A=¬B=
13 12 adantll AOnBCLimBA¬A=¬B=
14 om00 AOnBOnA𝑜B=A=B=
15 14 notbid AOnBOn¬A𝑜B=¬A=B=
16 ioran ¬A=B=¬A=¬B=
17 15 16 bitrdi AOnBOn¬A𝑜B=¬A=¬B=
18 1 17 sylan2 AOnBCLimB¬A𝑜B=¬A=¬B=
19 18 adantr AOnBCLimBA¬A𝑜B=¬A=¬B=
20 13 19 mpbird AOnBCLimBA¬A𝑜B=
21 vex yV
22 21 sucid ysucy
23 omlim AOnBCLimBA𝑜B=xBA𝑜x
24 eqeq1 A𝑜B=sucyA𝑜B=xBA𝑜xsucy=xBA𝑜x
25 24 biimpac A𝑜B=xBA𝑜xA𝑜B=sucysucy=xBA𝑜x
26 23 25 sylan AOnBCLimBA𝑜B=sucysucy=xBA𝑜x
27 22 26 eleqtrid AOnBCLimBA𝑜B=sucyyxBA𝑜x
28 eliun yxBA𝑜xxByA𝑜x
29 27 28 sylib AOnBCLimBA𝑜B=sucyxByA𝑜x
30 29 adantlr AOnBCLimBAA𝑜B=sucyxByA𝑜x
31 onelon BOnxBxOn
32 1 31 sylan BCLimBxBxOn
33 onnbtwn xOn¬xBBsucx
34 imnan xB¬Bsucx¬xBBsucx
35 33 34 sylibr xOnxB¬Bsucx
36 35 com12 xBxOn¬Bsucx
37 36 adantl BCLimBxBxOn¬Bsucx
38 32 37 mpd BCLimBxB¬Bsucx
39 38 ad5ant24 AOnBCLimBAxByA𝑜x¬Bsucx
40 simpl BOnxBBOn
41 40 31 jca BOnxBBOnxOn
42 1 41 sylan BCLimBxBBOnxOn
43 42 anim2i AOnBCLimBxBAOnBOnxOn
44 43 anassrs AOnBCLimBxBAOnBOnxOn
45 omcl AOnxOnA𝑜xOn
46 eloni A𝑜xOnOrdA𝑜x
47 ordsucelsuc OrdA𝑜xyA𝑜xsucysucA𝑜x
48 46 47 syl A𝑜xOnyA𝑜xsucysucA𝑜x
49 oa1suc A𝑜xOnA𝑜x+𝑜1𝑜=sucA𝑜x
50 49 eleq2d A𝑜xOnsucyA𝑜x+𝑜1𝑜sucysucA𝑜x
51 48 50 bitr4d A𝑜xOnyA𝑜xsucyA𝑜x+𝑜1𝑜
52 45 51 syl AOnxOnyA𝑜xsucyA𝑜x+𝑜1𝑜
53 52 adantr AOnxOnAyA𝑜xsucyA𝑜x+𝑜1𝑜
54 eloni AOnOrdA
55 ordgt0ge1 OrdAA1𝑜A
56 54 55 syl AOnA1𝑜A
57 56 adantr AOnxOnA1𝑜A
58 1on 1𝑜On
59 oaword 1𝑜OnAOnA𝑜xOn1𝑜AA𝑜x+𝑜1𝑜A𝑜x+𝑜A
60 58 59 mp3an1 AOnA𝑜xOn1𝑜AA𝑜x+𝑜1𝑜A𝑜x+𝑜A
61 45 60 syldan AOnxOn1𝑜AA𝑜x+𝑜1𝑜A𝑜x+𝑜A
62 57 61 bitrd AOnxOnAA𝑜x+𝑜1𝑜A𝑜x+𝑜A
63 62 biimpa AOnxOnAA𝑜x+𝑜1𝑜A𝑜x+𝑜A
64 omsuc AOnxOnA𝑜sucx=A𝑜x+𝑜A
65 64 adantr AOnxOnAA𝑜sucx=A𝑜x+𝑜A
66 63 65 sseqtrrd AOnxOnAA𝑜x+𝑜1𝑜A𝑜sucx
67 66 sseld AOnxOnAsucyA𝑜x+𝑜1𝑜sucyA𝑜sucx
68 53 67 sylbid AOnxOnAyA𝑜xsucyA𝑜sucx
69 eleq1 A𝑜B=sucyA𝑜BA𝑜sucxsucyA𝑜sucx
70 69 biimprd A𝑜B=sucysucyA𝑜sucxA𝑜BA𝑜sucx
71 68 70 syl9 AOnxOnAA𝑜B=sucyyA𝑜xA𝑜BA𝑜sucx
72 71 com23 AOnxOnAyA𝑜xA𝑜B=sucyA𝑜BA𝑜sucx
73 72 adantlrl AOnBOnxOnAyA𝑜xA𝑜B=sucyA𝑜BA𝑜sucx
74 onsucb xOnsucxOn
75 omord BOnsucxOnAOnBsucxAA𝑜BA𝑜sucx
76 simpl BsucxABsucx
77 75 76 syl6bir BOnsucxOnAOnA𝑜BA𝑜sucxBsucx
78 74 77 syl3an2b BOnxOnAOnA𝑜BA𝑜sucxBsucx
79 78 3comr AOnBOnxOnA𝑜BA𝑜sucxBsucx
80 79 3expb AOnBOnxOnA𝑜BA𝑜sucxBsucx
81 80 adantr AOnBOnxOnAA𝑜BA𝑜sucxBsucx
82 73 81 syl6d AOnBOnxOnAyA𝑜xA𝑜B=sucyBsucx
83 44 82 sylan AOnBCLimBxBAyA𝑜xA𝑜B=sucyBsucx
84 83 an32s AOnBCLimBAxByA𝑜xA𝑜B=sucyBsucx
85 84 imp AOnBCLimBAxByA𝑜xA𝑜B=sucyBsucx
86 39 85 mtod AOnBCLimBAxByA𝑜x¬A𝑜B=sucy
87 86 rexlimdva2 AOnBCLimBAxByA𝑜x¬A𝑜B=sucy
88 87 adantr AOnBCLimBAA𝑜B=sucyxByA𝑜x¬A𝑜B=sucy
89 30 88 mpd AOnBCLimBAA𝑜B=sucy¬A𝑜B=sucy
90 89 pm2.01da AOnBCLimBA¬A𝑜B=sucy
91 90 adantr AOnBCLimBAyOn¬A𝑜B=sucy
92 91 nrexdv AOnBCLimBA¬yOnA𝑜B=sucy
93 ioran ¬A𝑜B=yOnA𝑜B=sucy¬A𝑜B=¬yOnA𝑜B=sucy
94 20 92 93 sylanbrc AOnBCLimBA¬A𝑜B=yOnA𝑜B=sucy
95 dflim3 LimA𝑜BOrdA𝑜B¬A𝑜B=yOnA𝑜B=sucy
96 6 94 95 sylanbrc AOnBCLimBALimA𝑜B