Metamath Proof Explorer


Theorem odi

Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of TakeutiZaring p. 64. Theorem 4.3 of Schloeder p. 12. (Contributed by NM, 26-Dec-2004)

Ref Expression
Assertion odi AOnBOnCOnA𝑜B+𝑜C=A𝑜B+𝑜A𝑜C

Proof

Step Hyp Ref Expression
1 oveq2 x=B+𝑜x=B+𝑜
2 1 oveq2d x=A𝑜B+𝑜x=A𝑜B+𝑜
3 oveq2 x=A𝑜x=A𝑜
4 3 oveq2d x=A𝑜B+𝑜A𝑜x=A𝑜B+𝑜A𝑜
5 2 4 eqeq12d x=A𝑜B+𝑜x=A𝑜B+𝑜A𝑜xA𝑜B+𝑜=A𝑜B+𝑜A𝑜
6 oveq2 x=yB+𝑜x=B+𝑜y
7 6 oveq2d x=yA𝑜B+𝑜x=A𝑜B+𝑜y
8 oveq2 x=yA𝑜x=A𝑜y
9 8 oveq2d x=yA𝑜B+𝑜A𝑜x=A𝑜B+𝑜A𝑜y
10 7 9 eqeq12d x=yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜xA𝑜B+𝑜y=A𝑜B+𝑜A𝑜y
11 oveq2 x=sucyB+𝑜x=B+𝑜sucy
12 11 oveq2d x=sucyA𝑜B+𝑜x=A𝑜B+𝑜sucy
13 oveq2 x=sucyA𝑜x=A𝑜sucy
14 13 oveq2d x=sucyA𝑜B+𝑜A𝑜x=A𝑜B+𝑜A𝑜sucy
15 12 14 eqeq12d x=sucyA𝑜B+𝑜x=A𝑜B+𝑜A𝑜xA𝑜B+𝑜sucy=A𝑜B+𝑜A𝑜sucy
16 oveq2 x=CB+𝑜x=B+𝑜C
17 16 oveq2d x=CA𝑜B+𝑜x=A𝑜B+𝑜C
18 oveq2 x=CA𝑜x=A𝑜C
19 18 oveq2d x=CA𝑜B+𝑜A𝑜x=A𝑜B+𝑜A𝑜C
20 17 19 eqeq12d x=CA𝑜B+𝑜x=A𝑜B+𝑜A𝑜xA𝑜B+𝑜C=A𝑜B+𝑜A𝑜C
21 omcl AOnBOnA𝑜BOn
22 oa0 A𝑜BOnA𝑜B+𝑜=A𝑜B
23 21 22 syl AOnBOnA𝑜B+𝑜=A𝑜B
24 om0 AOnA𝑜=
25 24 adantr AOnBOnA𝑜=
26 25 oveq2d AOnBOnA𝑜B+𝑜A𝑜=A𝑜B+𝑜
27 oa0 BOnB+𝑜=B
28 27 adantl AOnBOnB+𝑜=B
29 28 oveq2d AOnBOnA𝑜B+𝑜=A𝑜B
30 23 26 29 3eqtr4rd AOnBOnA𝑜B+𝑜=A𝑜B+𝑜A𝑜
31 oveq1 A𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
32 oasuc BOnyOnB+𝑜sucy=sucB+𝑜y
33 32 3adant1 AOnBOnyOnB+𝑜sucy=sucB+𝑜y
34 33 oveq2d AOnBOnyOnA𝑜B+𝑜sucy=A𝑜sucB+𝑜y
35 oacl BOnyOnB+𝑜yOn
36 omsuc AOnB+𝑜yOnA𝑜sucB+𝑜y=A𝑜B+𝑜y+𝑜A
37 35 36 sylan2 AOnBOnyOnA𝑜sucB+𝑜y=A𝑜B+𝑜y+𝑜A
38 37 3impb AOnBOnyOnA𝑜sucB+𝑜y=A𝑜B+𝑜y+𝑜A
39 34 38 eqtrd AOnBOnyOnA𝑜B+𝑜sucy=A𝑜B+𝑜y+𝑜A
40 omsuc AOnyOnA𝑜sucy=A𝑜y+𝑜A
41 40 3adant2 AOnBOnyOnA𝑜sucy=A𝑜y+𝑜A
42 41 oveq2d AOnBOnyOnA𝑜B+𝑜A𝑜sucy=A𝑜B+𝑜A𝑜y+𝑜A
43 omcl AOnyOnA𝑜yOn
44 oaass A𝑜BOnA𝑜yOnAOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
45 21 44 syl3an1 AOnBOnA𝑜yOnAOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
46 43 45 syl3an2 AOnBOnAOnyOnAOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
47 46 3exp AOnBOnAOnyOnAOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
48 47 exp4b AOnBOnAOnyOnAOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
49 48 pm2.43a AOnBOnyOnAOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
50 49 com4r AOnAOnBOnyOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
51 50 pm2.43i AOnBOnyOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
52 51 3imp AOnBOnyOnA𝑜B+𝑜A𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
53 42 52 eqtr4d AOnBOnyOnA𝑜B+𝑜A𝑜sucy=A𝑜B+𝑜A𝑜y+𝑜A
54 39 53 eqeq12d AOnBOnyOnA𝑜B+𝑜sucy=A𝑜B+𝑜A𝑜sucyA𝑜B+𝑜y+𝑜A=A𝑜B+𝑜A𝑜y+𝑜A
55 31 54 imbitrrid AOnBOnyOnA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜sucy=A𝑜B+𝑜A𝑜sucy
56 55 3exp AOnBOnyOnA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜sucy=A𝑜B+𝑜A𝑜sucy
57 56 com3r yOnAOnBOnA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜sucy=A𝑜B+𝑜A𝑜sucy
58 57 impd yOnAOnBOnA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜sucy=A𝑜B+𝑜A𝑜sucy
59 vex xV
60 limelon xVLimxxOn
61 59 60 mpan LimxxOn
62 oacl BOnxOnB+𝑜xOn
63 om0r B+𝑜xOn𝑜B+𝑜x=
64 62 63 syl BOnxOn𝑜B+𝑜x=
65 om0r BOn𝑜B=
66 om0r xOn𝑜x=
67 65 66 oveqan12d BOnxOn𝑜B+𝑜𝑜x=+𝑜
68 0elon On
69 oa0 On+𝑜=
70 68 69 ax-mp +𝑜=
71 67 70 eqtr2di BOnxOn=𝑜B+𝑜𝑜x
72 64 71 eqtrd BOnxOn𝑜B+𝑜x=𝑜B+𝑜𝑜x
73 61 72 sylan2 BOnLimx𝑜B+𝑜x=𝑜B+𝑜𝑜x
74 73 ancoms LimxBOn𝑜B+𝑜x=𝑜B+𝑜𝑜x
75 oveq1 A=A𝑜B+𝑜x=𝑜B+𝑜x
76 oveq1 A=A𝑜B=𝑜B
77 oveq1 A=A𝑜x=𝑜x
78 76 77 oveq12d A=A𝑜B+𝑜A𝑜x=𝑜B+𝑜𝑜x
79 75 78 eqeq12d A=A𝑜B+𝑜x=A𝑜B+𝑜A𝑜x𝑜B+𝑜x=𝑜B+𝑜𝑜x
80 74 79 imbitrrid A=LimxBOnA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
81 80 expd A=LimxBOnA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
82 81 com3r BOnA=LimxA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
83 82 imp BOnA=LimxA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
84 83 a1dd BOnA=LimxyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
85 simplr xOnBOnzB+𝑜xBOn
86 62 ancoms xOnBOnB+𝑜xOn
87 onelon B+𝑜xOnzB+𝑜xzOn
88 86 87 sylan xOnBOnzB+𝑜xzOn
89 ontri1 BOnzOnBz¬zB
90 oawordex BOnzOnBzvOnB+𝑜v=z
91 89 90 bitr3d BOnzOn¬zBvOnB+𝑜v=z
92 85 88 91 syl2anc xOnBOnzB+𝑜x¬zBvOnB+𝑜v=z
93 oaord vOnxOnBOnvxB+𝑜vB+𝑜x
94 93 3expb vOnxOnBOnvxB+𝑜vB+𝑜x
95 eleq1 B+𝑜v=zB+𝑜vB+𝑜xzB+𝑜x
96 94 95 sylan9bb vOnxOnBOnB+𝑜v=zvxzB+𝑜x
97 iba B+𝑜v=zvxvxB+𝑜v=z
98 97 adantl vOnxOnBOnB+𝑜v=zvxvxB+𝑜v=z
99 96 98 bitr3d vOnxOnBOnB+𝑜v=zzB+𝑜xvxB+𝑜v=z
100 99 an32s vOnB+𝑜v=zxOnBOnzB+𝑜xvxB+𝑜v=z
101 100 biimpcd zB+𝑜xvOnB+𝑜v=zxOnBOnvxB+𝑜v=z
102 101 exp4c zB+𝑜xvOnB+𝑜v=zxOnBOnvxB+𝑜v=z
103 102 com4r xOnBOnzB+𝑜xvOnB+𝑜v=zvxB+𝑜v=z
104 103 imp xOnBOnzB+𝑜xvOnB+𝑜v=zvxB+𝑜v=z
105 104 reximdvai xOnBOnzB+𝑜xvOnB+𝑜v=zvOnvxB+𝑜v=z
106 92 105 sylbid xOnBOnzB+𝑜x¬zBvOnvxB+𝑜v=z
107 106 orrd xOnBOnzB+𝑜xzBvOnvxB+𝑜v=z
108 61 107 sylanl1 LimxBOnzB+𝑜xzBvOnvxB+𝑜v=z
109 108 adantlrl LimxAOnBOnzB+𝑜xzBvOnvxB+𝑜v=z
110 109 adantlr LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzB+𝑜xzBvOnvxB+𝑜v=z
111 0ellim Limxx
112 om00el AOnxOnA𝑜xAx
113 112 biimprd AOnxOnAxA𝑜x
114 111 113 sylan2i AOnxOnALimxA𝑜x
115 61 114 sylan2 AOnLimxALimxA𝑜x
116 115 exp4b AOnLimxALimxA𝑜x
117 116 com4r LimxAOnLimxAA𝑜x
118 117 pm2.43a LimxAOnAA𝑜x
119 118 imp31 LimxAOnAA𝑜x
120 119 a1d LimxAOnAzBA𝑜x
121 120 adantlrr LimxAOnBOnAzBA𝑜x
122 omordi BOnAOnAzBA𝑜zA𝑜B
123 122 ancom1s AOnBOnAzBA𝑜zA𝑜B
124 onelss A𝑜BOnA𝑜zA𝑜BA𝑜zA𝑜B
125 22 sseq2d A𝑜BOnA𝑜zA𝑜B+𝑜A𝑜zA𝑜B
126 124 125 sylibrd A𝑜BOnA𝑜zA𝑜BA𝑜zA𝑜B+𝑜
127 21 126 syl AOnBOnA𝑜zA𝑜BA𝑜zA𝑜B+𝑜
128 127 adantr AOnBOnAA𝑜zA𝑜BA𝑜zA𝑜B+𝑜
129 123 128 syld AOnBOnAzBA𝑜zA𝑜B+𝑜
130 129 adantll LimxAOnBOnAzBA𝑜zA𝑜B+𝑜
131 121 130 jcad LimxAOnBOnAzBA𝑜xA𝑜zA𝑜B+𝑜
132 oveq2 w=A𝑜B+𝑜w=A𝑜B+𝑜
133 132 sseq2d w=A𝑜zA𝑜B+𝑜wA𝑜zA𝑜B+𝑜
134 133 rspcev A𝑜xA𝑜zA𝑜B+𝑜wA𝑜xA𝑜zA𝑜B+𝑜w
135 131 134 syl6 LimxAOnBOnAzBwA𝑜xA𝑜zA𝑜B+𝑜w
136 135 adantrr LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzBwA𝑜xA𝑜zA𝑜B+𝑜w
137 omordi xOnAOnAvxA𝑜vA𝑜x
138 61 137 sylanl1 LimxAOnAvxA𝑜vA𝑜x
139 138 adantrd LimxAOnAvxB+𝑜v=zA𝑜vA𝑜x
140 139 adantrr LimxAOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxB+𝑜v=zA𝑜vA𝑜x
141 oveq2 y=vB+𝑜y=B+𝑜v
142 141 oveq2d y=vA𝑜B+𝑜y=A𝑜B+𝑜v
143 oveq2 y=vA𝑜y=A𝑜v
144 143 oveq2d y=vA𝑜B+𝑜A𝑜y=A𝑜B+𝑜A𝑜v
145 142 144 eqeq12d y=vA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜v=A𝑜B+𝑜A𝑜v
146 145 rspccv yxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxA𝑜B+𝑜v=A𝑜B+𝑜A𝑜v
147 oveq2 B+𝑜v=zA𝑜B+𝑜v=A𝑜z
148 eqeq1 A𝑜B+𝑜v=A𝑜B+𝑜A𝑜vA𝑜B+𝑜v=A𝑜zA𝑜B+𝑜A𝑜v=A𝑜z
149 147 148 imbitrid A𝑜B+𝑜v=A𝑜B+𝑜A𝑜vB+𝑜v=zA𝑜B+𝑜A𝑜v=A𝑜z
150 eqimss2 A𝑜B+𝑜A𝑜v=A𝑜zA𝑜zA𝑜B+𝑜A𝑜v
151 149 150 syl6 A𝑜B+𝑜v=A𝑜B+𝑜A𝑜vB+𝑜v=zA𝑜zA𝑜B+𝑜A𝑜v
152 151 imim2i vxA𝑜B+𝑜v=A𝑜B+𝑜A𝑜vvxB+𝑜v=zA𝑜zA𝑜B+𝑜A𝑜v
153 152 impd vxA𝑜B+𝑜v=A𝑜B+𝑜A𝑜vvxB+𝑜v=zA𝑜zA𝑜B+𝑜A𝑜v
154 146 153 syl yxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxB+𝑜v=zA𝑜zA𝑜B+𝑜A𝑜v
155 154 ad2antll LimxAOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxB+𝑜v=zA𝑜zA𝑜B+𝑜A𝑜v
156 140 155 jcad LimxAOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxB+𝑜v=zA𝑜vA𝑜xA𝑜zA𝑜B+𝑜A𝑜v
157 oveq2 w=A𝑜vA𝑜B+𝑜w=A𝑜B+𝑜A𝑜v
158 157 sseq2d w=A𝑜vA𝑜zA𝑜B+𝑜wA𝑜zA𝑜B+𝑜A𝑜v
159 158 rspcev A𝑜vA𝑜xA𝑜zA𝑜B+𝑜A𝑜vwA𝑜xA𝑜zA𝑜B+𝑜w
160 156 159 syl6 LimxAOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxB+𝑜v=zwA𝑜xA𝑜zA𝑜B+𝑜w
161 160 rexlimdvw LimxAOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvOnvxB+𝑜v=zwA𝑜xA𝑜zA𝑜B+𝑜w
162 161 adantlrr LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvOnvxB+𝑜v=zwA𝑜xA𝑜zA𝑜B+𝑜w
163 136 162 jaod LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzBvOnvxB+𝑜v=zwA𝑜xA𝑜zA𝑜B+𝑜w
164 163 adantr LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzB+𝑜xzBvOnvxB+𝑜v=zwA𝑜xA𝑜zA𝑜B+𝑜w
165 110 164 mpd LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzB+𝑜xwA𝑜xA𝑜zA𝑜B+𝑜w
166 165 ralrimiva LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzB+𝑜xwA𝑜xA𝑜zA𝑜B+𝑜w
167 iunss2 zB+𝑜xwA𝑜xA𝑜zA𝑜B+𝑜wzB+𝑜xA𝑜zwA𝑜xA𝑜B+𝑜w
168 166 167 syl LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzB+𝑜xA𝑜zwA𝑜xA𝑜B+𝑜w
169 omordlim AOnxVLimxwA𝑜xvxwA𝑜v
170 169 ex AOnxVLimxwA𝑜xvxwA𝑜v
171 59 170 mpanr1 AOnLimxwA𝑜xvxwA𝑜v
172 171 ancoms LimxAOnwA𝑜xvxwA𝑜v
173 172 imp LimxAOnwA𝑜xvxwA𝑜v
174 173 adantlrr LimxAOnBOnwA𝑜xvxwA𝑜v
175 174 adantlr LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜ywA𝑜xvxwA𝑜v
176 oaordi xOnBOnvxB+𝑜vB+𝑜x
177 61 176 sylan LimxBOnvxB+𝑜vB+𝑜x
178 177 imp LimxBOnvxB+𝑜vB+𝑜x
179 178 adantlrl LimxAOnBOnvxB+𝑜vB+𝑜x
180 179 a1d LimxAOnBOnvxwA𝑜vB+𝑜vB+𝑜x
181 180 adantlr LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vB+𝑜vB+𝑜x
182 limord LimxOrdx
183 ordelon OrdxvxvOn
184 182 183 sylan LimxvxvOn
185 omcl AOnvOnA𝑜vOn
186 185 ancoms vOnAOnA𝑜vOn
187 186 adantrr vOnAOnBOnA𝑜vOn
188 21 adantl vOnAOnBOnA𝑜BOn
189 oaordi A𝑜vOnA𝑜BOnwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
190 187 188 189 syl2anc vOnAOnBOnwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
191 184 190 sylan LimxvxAOnBOnwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
192 191 an32s LimxAOnBOnvxwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
193 192 adantlr LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
194 145 rspccva yxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxA𝑜B+𝑜v=A𝑜B+𝑜A𝑜v
195 194 eleq2d yxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxA𝑜B+𝑜wA𝑜B+𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
196 195 adantll LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxA𝑜B+𝑜wA𝑜B+𝑜vA𝑜B+𝑜wA𝑜B+𝑜A𝑜v
197 193 196 sylibrd LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜v
198 oacl BOnvOnB+𝑜vOn
199 198 ancoms vOnBOnB+𝑜vOn
200 omcl AOnB+𝑜vOnA𝑜B+𝑜vOn
201 199 200 sylan2 AOnvOnBOnA𝑜B+𝑜vOn
202 201 an12s vOnAOnBOnA𝑜B+𝑜vOn
203 184 202 sylan LimxvxAOnBOnA𝑜B+𝑜vOn
204 203 an32s LimxAOnBOnvxA𝑜B+𝑜vOn
205 onelss A𝑜B+𝑜vOnA𝑜B+𝑜wA𝑜B+𝑜vA𝑜B+𝑜wA𝑜B+𝑜v
206 204 205 syl LimxAOnBOnvxA𝑜B+𝑜wA𝑜B+𝑜vA𝑜B+𝑜wA𝑜B+𝑜v
207 206 adantlr LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxA𝑜B+𝑜wA𝑜B+𝑜vA𝑜B+𝑜wA𝑜B+𝑜v
208 197 207 syld LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vA𝑜B+𝑜wA𝑜B+𝑜v
209 181 208 jcad LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vB+𝑜vB+𝑜xA𝑜B+𝑜wA𝑜B+𝑜v
210 oveq2 z=B+𝑜vA𝑜z=A𝑜B+𝑜v
211 210 sseq2d z=B+𝑜vA𝑜B+𝑜wA𝑜zA𝑜B+𝑜wA𝑜B+𝑜v
212 211 rspcev B+𝑜vB+𝑜xA𝑜B+𝑜wA𝑜B+𝑜vzB+𝑜xA𝑜B+𝑜wA𝑜z
213 209 212 syl6 LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vzB+𝑜xA𝑜B+𝑜wA𝑜z
214 213 rexlimdva LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yvxwA𝑜vzB+𝑜xA𝑜B+𝑜wA𝑜z
215 214 adantr LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜ywA𝑜xvxwA𝑜vzB+𝑜xA𝑜B+𝑜wA𝑜z
216 175 215 mpd LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜ywA𝑜xzB+𝑜xA𝑜B+𝑜wA𝑜z
217 216 ralrimiva LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜ywA𝑜xzB+𝑜xA𝑜B+𝑜wA𝑜z
218 iunss2 wA𝑜xzB+𝑜xA𝑜B+𝑜wA𝑜zwA𝑜xA𝑜B+𝑜wzB+𝑜xA𝑜z
219 217 218 syl LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜ywA𝑜xA𝑜B+𝑜wzB+𝑜xA𝑜z
220 219 adantrl LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜ywA𝑜xA𝑜B+𝑜wzB+𝑜xA𝑜z
221 168 220 eqssd LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yzB+𝑜xA𝑜z=wA𝑜xA𝑜B+𝑜w
222 oalimcl BOnxVLimxLimB+𝑜x
223 59 222 mpanr1 BOnLimxLimB+𝑜x
224 223 ancoms LimxBOnLimB+𝑜x
225 224 anim2i AOnLimxBOnAOnLimB+𝑜x
226 225 an12s LimxAOnBOnAOnLimB+𝑜x
227 ovex B+𝑜xV
228 omlim AOnB+𝑜xVLimB+𝑜xA𝑜B+𝑜x=zB+𝑜xA𝑜z
229 227 228 mpanr1 AOnLimB+𝑜xA𝑜B+𝑜x=zB+𝑜xA𝑜z
230 226 229 syl LimxAOnBOnA𝑜B+𝑜x=zB+𝑜xA𝑜z
231 230 adantr LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=zB+𝑜xA𝑜z
232 21 ad2antlr LimxAOnBOnAA𝑜BOn
233 59 jctl LimxxVLimx
234 233 anim1ci LimxAOnAOnxVLimx
235 omlimcl AOnxVLimxALimA𝑜x
236 234 235 sylan LimxAOnALimA𝑜x
237 236 adantlrr LimxAOnBOnALimA𝑜x
238 ovex A𝑜xV
239 237 238 jctil LimxAOnBOnAA𝑜xVLimA𝑜x
240 oalim A𝑜BOnA𝑜xVLimA𝑜xA𝑜B+𝑜A𝑜x=wA𝑜xA𝑜B+𝑜w
241 232 239 240 syl2anc LimxAOnBOnAA𝑜B+𝑜A𝑜x=wA𝑜xA𝑜B+𝑜w
242 241 adantrr LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜A𝑜x=wA𝑜xA𝑜B+𝑜w
243 221 231 242 3eqtr4d LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
244 243 exp43 LimxAOnBOnAyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
245 244 com3l AOnBOnALimxyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
246 245 imp AOnBOnALimxyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
247 84 246 oe0lem AOnBOnLimxyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
248 247 com12 LimxAOnBOnyxA𝑜B+𝑜y=A𝑜B+𝑜A𝑜yA𝑜B+𝑜x=A𝑜B+𝑜A𝑜x
249 5 10 15 20 30 58 248 tfinds3 COnAOnBOnA𝑜B+𝑜C=A𝑜B+𝑜A𝑜C
250 249 expdcom AOnBOnCOnA𝑜B+𝑜C=A𝑜B+𝑜A𝑜C
251 250 3imp AOnBOnCOnA𝑜B+𝑜C=A𝑜B+𝑜A𝑜C