Metamath Proof Explorer


Theorem oawordex

Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59 and its converse. See oawordeu for uniqueness. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oawordex AOnBOnABxOnA+𝑜x=B

Proof

Step Hyp Ref Expression
1 oawordeu AOnBOnAB∃!xOnA+𝑜x=B
2 1 ex AOnBOnAB∃!xOnA+𝑜x=B
3 reurex ∃!xOnA+𝑜x=BxOnA+𝑜x=B
4 2 3 syl6 AOnBOnABxOnA+𝑜x=B
5 oawordexr AOnxOnA+𝑜x=BAB
6 5 ex AOnxOnA+𝑜x=BAB
7 6 adantr AOnBOnxOnA+𝑜x=BAB
8 4 7 impbid AOnBOnABxOnA+𝑜x=B