Metamath Proof Explorer


Theorem oawordexr

Description: Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oawordexr AOnxOnA+𝑜x=BAB

Proof

Step Hyp Ref Expression
1 oaword1 AOnxOnAA+𝑜x
2 sseq2 A+𝑜x=BAA+𝑜xAB
3 1 2 syl5ibcom AOnxOnA+𝑜x=BAB
4 3 rexlimdva AOnxOnA+𝑜x=BAB
5 4 imp AOnxOnA+𝑜x=BAB