Metamath Proof Explorer


Theorem oawordex

Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59 and its converse. See oawordeu for uniqueness. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion oawordex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 oawordeu ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 )
2 1 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )
3 reurex ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 )
4 2 3 syl6 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )
5 oawordexr ( ( 𝐴 ∈ On ∧ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴𝐵 )
6 5 ex ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵𝐴𝐵 ) )
7 6 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵𝐴𝐵 ) )
8 4 7 impbid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )