| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 3 |
|
oawordex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 4 |
2 3
|
sylibd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 5 |
|
oaord1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ ( 𝐴 +o 𝑥 ) ) ) |
| 6 |
|
eleq2 |
⊢ ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( 𝐴 ∈ ( 𝐴 +o 𝑥 ) ↔ 𝐴 ∈ 𝐵 ) ) |
| 7 |
5 6
|
sylan9bb |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
| 8 |
7
|
biimprcd |
⊢ ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ∅ ∈ 𝑥 ) ) |
| 9 |
8
|
exp4c |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) ) ) |
| 10 |
9
|
com12 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ∅ ∈ 𝑥 ) ) ) ) |
| 11 |
10
|
imp4b |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ∅ ∈ 𝑥 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 13 |
11 12
|
jca2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ On ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 14 |
13
|
expd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 15 |
14
|
reximdvai |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 16 |
15
|
ex |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 18 |
4 17
|
mpdd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 19 |
7
|
biimpd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → ( ∅ ∈ 𝑥 → 𝐴 ∈ 𝐵 ) ) |
| 20 |
19
|
exp31 |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( 𝐴 +o 𝑥 ) = 𝐵 → ( ∅ ∈ 𝑥 → 𝐴 ∈ 𝐵 ) ) ) ) |
| 21 |
20
|
com34 |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 → ( ( 𝐴 +o 𝑥 ) = 𝐵 → 𝐴 ∈ 𝐵 ) ) ) ) |
| 22 |
21
|
imp4a |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On → ( ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) ) |
| 23 |
22
|
rexlimdv |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 25 |
18 24
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ On ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |