Metamath Proof Explorer


Theorem oa0

Description: Addition with zero. Proposition 8.3 of TakeutiZaring p. 57. Definition 2.3 of Schloeder p. 4. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oa0 AOnA+𝑜=A

Proof

Step Hyp Ref Expression
1 0elon On
2 oav AOnOnA+𝑜=recxVsucxA
3 1 2 mpan2 AOnA+𝑜=recxVsucxA
4 rdg0g AOnrecxVsucxA=A
5 3 4 eqtrd AOnA+𝑜=A