Metamath Proof Explorer


Theorem oav

Description: Value of ordinal addition. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oav A On B On A + 𝑜 B = rec x V suc x A B

Proof

Step Hyp Ref Expression
1 rdgeq2 y = A rec x V suc x y = rec x V suc x A
2 1 fveq1d y = A rec x V suc x y z = rec x V suc x A z
3 fveq2 z = B rec x V suc x A z = rec x V suc x A B
4 df-oadd + 𝑜 = y On , z On rec x V suc x y z
5 fvex rec x V suc x A B V
6 2 3 4 5 ovmpo A On B On A + 𝑜 B = rec x V suc x A B