Step |
Hyp |
Ref |
Expression |
1 |
|
rdgeq2 |
⊢ ( 𝑦 = 𝐴 → rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝑦 ) = rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝑦 = 𝐴 → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝑦 ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝑧 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
4 |
|
df-oadd |
⊢ +o = ( 𝑦 ∈ On , 𝑧 ∈ On ↦ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝑦 ) ‘ 𝑧 ) ) |
5 |
|
fvex |
⊢ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ∈ V |
6 |
2 3 4 5
|
ovmpo |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |