Metamath Proof Explorer


Theorem oaass

Description: Ordinal addition is associative. Theorem 25 of Suppes p. 211. Theorem 4.2 of Schloeder p. 11. (Contributed by NM, 10-Dec-2004)

Ref Expression
Assertion oaass AOnBOnCOnA+𝑜B+𝑜C=A+𝑜B+𝑜C

Proof

Step Hyp Ref Expression
1 oveq2 x=A+𝑜B+𝑜x=A+𝑜B+𝑜
2 oveq2 x=B+𝑜x=B+𝑜
3 2 oveq2d x=A+𝑜B+𝑜x=A+𝑜B+𝑜
4 1 3 eqeq12d x=A+𝑜B+𝑜x=A+𝑜B+𝑜xA+𝑜B+𝑜=A+𝑜B+𝑜
5 oveq2 x=yA+𝑜B+𝑜x=A+𝑜B+𝑜y
6 oveq2 x=yB+𝑜x=B+𝑜y
7 6 oveq2d x=yA+𝑜B+𝑜x=A+𝑜B+𝑜y
8 5 7 eqeq12d x=yA+𝑜B+𝑜x=A+𝑜B+𝑜xA+𝑜B+𝑜y=A+𝑜B+𝑜y
9 oveq2 x=sucyA+𝑜B+𝑜x=A+𝑜B+𝑜sucy
10 oveq2 x=sucyB+𝑜x=B+𝑜sucy
11 10 oveq2d x=sucyA+𝑜B+𝑜x=A+𝑜B+𝑜sucy
12 9 11 eqeq12d x=sucyA+𝑜B+𝑜x=A+𝑜B+𝑜xA+𝑜B+𝑜sucy=A+𝑜B+𝑜sucy
13 oveq2 x=CA+𝑜B+𝑜x=A+𝑜B+𝑜C
14 oveq2 x=CB+𝑜x=B+𝑜C
15 14 oveq2d x=CA+𝑜B+𝑜x=A+𝑜B+𝑜C
16 13 15 eqeq12d x=CA+𝑜B+𝑜x=A+𝑜B+𝑜xA+𝑜B+𝑜C=A+𝑜B+𝑜C
17 oacl AOnBOnA+𝑜BOn
18 oa0 A+𝑜BOnA+𝑜B+𝑜=A+𝑜B
19 17 18 syl AOnBOnA+𝑜B+𝑜=A+𝑜B
20 oa0 BOnB+𝑜=B
21 20 oveq2d BOnA+𝑜B+𝑜=A+𝑜B
22 21 adantl AOnBOnA+𝑜B+𝑜=A+𝑜B
23 19 22 eqtr4d AOnBOnA+𝑜B+𝑜=A+𝑜B+𝑜
24 suceq A+𝑜B+𝑜y=A+𝑜B+𝑜ysucA+𝑜B+𝑜y=sucA+𝑜B+𝑜y
25 oasuc A+𝑜BOnyOnA+𝑜B+𝑜sucy=sucA+𝑜B+𝑜y
26 17 25 sylan AOnBOnyOnA+𝑜B+𝑜sucy=sucA+𝑜B+𝑜y
27 oasuc BOnyOnB+𝑜sucy=sucB+𝑜y
28 27 oveq2d BOnyOnA+𝑜B+𝑜sucy=A+𝑜sucB+𝑜y
29 28 adantl AOnBOnyOnA+𝑜B+𝑜sucy=A+𝑜sucB+𝑜y
30 oacl BOnyOnB+𝑜yOn
31 oasuc AOnB+𝑜yOnA+𝑜sucB+𝑜y=sucA+𝑜B+𝑜y
32 30 31 sylan2 AOnBOnyOnA+𝑜sucB+𝑜y=sucA+𝑜B+𝑜y
33 29 32 eqtrd AOnBOnyOnA+𝑜B+𝑜sucy=sucA+𝑜B+𝑜y
34 33 anassrs AOnBOnyOnA+𝑜B+𝑜sucy=sucA+𝑜B+𝑜y
35 26 34 eqeq12d AOnBOnyOnA+𝑜B+𝑜sucy=A+𝑜B+𝑜sucysucA+𝑜B+𝑜y=sucA+𝑜B+𝑜y
36 24 35 imbitrrid AOnBOnyOnA+𝑜B+𝑜y=A+𝑜B+𝑜yA+𝑜B+𝑜sucy=A+𝑜B+𝑜sucy
37 36 expcom yOnAOnBOnA+𝑜B+𝑜y=A+𝑜B+𝑜yA+𝑜B+𝑜sucy=A+𝑜B+𝑜sucy
38 iuneq2 yxA+𝑜B+𝑜y=A+𝑜B+𝑜yyxA+𝑜B+𝑜y=yxA+𝑜B+𝑜y
39 38 adantl LimxAOnBOnyxA+𝑜B+𝑜y=A+𝑜B+𝑜yyxA+𝑜B+𝑜y=yxA+𝑜B+𝑜y
40 vex xV
41 oalim A+𝑜BOnxVLimxA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
42 40 41 mpanr1 A+𝑜BOnLimxA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
43 17 42 sylan AOnBOnLimxA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
44 43 ancoms LimxAOnBOnA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
45 44 adantr LimxAOnBOnyxA+𝑜B+𝑜y=A+𝑜B+𝑜yA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
46 oalimcl BOnxVLimxLimB+𝑜x
47 40 46 mpanr1 BOnLimxLimB+𝑜x
48 47 ancoms LimxBOnLimB+𝑜x
49 ovex B+𝑜xV
50 oalim AOnB+𝑜xVLimB+𝑜xA+𝑜B+𝑜x=zB+𝑜xA+𝑜z
51 49 50 mpanr1 AOnLimB+𝑜xA+𝑜B+𝑜x=zB+𝑜xA+𝑜z
52 48 51 sylan2 AOnLimxBOnA+𝑜B+𝑜x=zB+𝑜xA+𝑜z
53 limelon xVLimxxOn
54 40 53 mpan LimxxOn
55 oacl BOnxOnB+𝑜xOn
56 55 ancoms xOnBOnB+𝑜xOn
57 onelon B+𝑜xOnzB+𝑜xzOn
58 57 ex B+𝑜xOnzB+𝑜xzOn
59 56 58 syl xOnBOnzB+𝑜xzOn
60 59 adantld xOnBOnAOnzB+𝑜xzOn
61 60 adantl LimxxOnBOnAOnzB+𝑜xzOn
62 0ellim Limxx
63 onelss BOnzBzB
64 20 sseq2d BOnzB+𝑜zB
65 63 64 sylibrd BOnzBzB+𝑜
66 65 imp BOnzBzB+𝑜
67 oveq2 y=B+𝑜y=B+𝑜
68 67 sseq2d y=zB+𝑜yzB+𝑜
69 68 rspcev xzB+𝑜yxzB+𝑜y
70 62 66 69 syl2an LimxBOnzByxzB+𝑜y
71 70 expr LimxBOnzByxzB+𝑜y
72 71 adantrl LimxxOnBOnzByxzB+𝑜y
73 72 adantrr LimxxOnBOnzB+𝑜xzOnzByxzB+𝑜y
74 oawordex BOnzOnBzyOnB+𝑜y=z
75 74 ad2ant2l xOnBOnzB+𝑜xzOnBzyOnB+𝑜y=z
76 oaord yOnxOnBOnyxB+𝑜yB+𝑜x
77 76 3expb yOnxOnBOnyxB+𝑜yB+𝑜x
78 eleq1 B+𝑜y=zB+𝑜yB+𝑜xzB+𝑜x
79 77 78 sylan9bb yOnxOnBOnB+𝑜y=zyxzB+𝑜x
80 79 an32s yOnB+𝑜y=zxOnBOnyxzB+𝑜x
81 80 biimpar yOnB+𝑜y=zxOnBOnzB+𝑜xyx
82 eqimss2 B+𝑜y=zzB+𝑜y
83 82 ad3antlr yOnB+𝑜y=zxOnBOnzB+𝑜xzB+𝑜y
84 81 83 jca yOnB+𝑜y=zxOnBOnzB+𝑜xyxzB+𝑜y
85 84 anasss yOnB+𝑜y=zxOnBOnzB+𝑜xyxzB+𝑜y
86 85 expcom xOnBOnzB+𝑜xyOnB+𝑜y=zyxzB+𝑜y
87 86 reximdv2 xOnBOnzB+𝑜xyOnB+𝑜y=zyxzB+𝑜y
88 87 adantrr xOnBOnzB+𝑜xzOnyOnB+𝑜y=zyxzB+𝑜y
89 75 88 sylbid xOnBOnzB+𝑜xzOnBzyxzB+𝑜y
90 89 adantl LimxxOnBOnzB+𝑜xzOnBzyxzB+𝑜y
91 eloni zOnOrdz
92 eloni BOnOrdB
93 ordtri2or OrdzOrdBzBBz
94 91 92 93 syl2anr BOnzOnzBBz
95 94 ad2ant2l xOnBOnzB+𝑜xzOnzBBz
96 95 adantl LimxxOnBOnzB+𝑜xzOnzBBz
97 73 90 96 mpjaod LimxxOnBOnzB+𝑜xzOnyxzB+𝑜y
98 97 exp45 LimxxOnBOnzB+𝑜xzOnyxzB+𝑜y
99 98 imp LimxxOnBOnzB+𝑜xzOnyxzB+𝑜y
100 99 adantld LimxxOnBOnAOnzB+𝑜xzOnyxzB+𝑜y
101 100 imp32 LimxxOnBOnAOnzB+𝑜xzOnyxzB+𝑜y
102 simplrr LimxxOnBOnAOnzB+𝑜xzOnyxzOn
103 onelon xOnyxyOn
104 103 30 sylan2 BOnxOnyxB+𝑜yOn
105 104 exp32 BOnxOnyxB+𝑜yOn
106 105 com12 xOnBOnyxB+𝑜yOn
107 106 imp31 xOnBOnyxB+𝑜yOn
108 107 ad4ant24 LimxxOnBOnAOnzB+𝑜xzOnyxB+𝑜yOn
109 simpll AOnzB+𝑜xzOnAOn
110 109 ad2antlr LimxxOnBOnAOnzB+𝑜xzOnyxAOn
111 oaword zOnB+𝑜yOnAOnzB+𝑜yA+𝑜zA+𝑜B+𝑜y
112 102 108 110 111 syl3anc LimxxOnBOnAOnzB+𝑜xzOnyxzB+𝑜yA+𝑜zA+𝑜B+𝑜y
113 112 rexbidva LimxxOnBOnAOnzB+𝑜xzOnyxzB+𝑜yyxA+𝑜zA+𝑜B+𝑜y
114 101 113 mpbid LimxxOnBOnAOnzB+𝑜xzOnyxA+𝑜zA+𝑜B+𝑜y
115 114 exp32 LimxxOnBOnAOnzB+𝑜xzOnyxA+𝑜zA+𝑜B+𝑜y
116 61 115 mpdd LimxxOnBOnAOnzB+𝑜xyxA+𝑜zA+𝑜B+𝑜y
117 116 exp32 LimxxOnBOnAOnzB+𝑜xyxA+𝑜zA+𝑜B+𝑜y
118 54 117 mpd LimxBOnAOnzB+𝑜xyxA+𝑜zA+𝑜B+𝑜y
119 118 exp4a LimxBOnAOnzB+𝑜xyxA+𝑜zA+𝑜B+𝑜y
120 119 imp31 LimxBOnAOnzB+𝑜xyxA+𝑜zA+𝑜B+𝑜y
121 120 ralrimiv LimxBOnAOnzB+𝑜xyxA+𝑜zA+𝑜B+𝑜y
122 iunss2 zB+𝑜xyxA+𝑜zA+𝑜B+𝑜yzB+𝑜xA+𝑜zyxA+𝑜B+𝑜y
123 121 122 syl LimxBOnAOnzB+𝑜xA+𝑜zyxA+𝑜B+𝑜y
124 123 ancoms AOnLimxBOnzB+𝑜xA+𝑜zyxA+𝑜B+𝑜y
125 oaordi xOnBOnyxB+𝑜yB+𝑜x
126 125 anim1d xOnBOnyxwA+𝑜B+𝑜yB+𝑜yB+𝑜xwA+𝑜B+𝑜y
127 oveq2 z=B+𝑜yA+𝑜z=A+𝑜B+𝑜y
128 127 eleq2d z=B+𝑜ywA+𝑜zwA+𝑜B+𝑜y
129 128 rspcev B+𝑜yB+𝑜xwA+𝑜B+𝑜yzB+𝑜xwA+𝑜z
130 126 129 syl6 xOnBOnyxwA+𝑜B+𝑜yzB+𝑜xwA+𝑜z
131 130 expd xOnBOnyxwA+𝑜B+𝑜yzB+𝑜xwA+𝑜z
132 131 rexlimdv xOnBOnyxwA+𝑜B+𝑜yzB+𝑜xwA+𝑜z
133 eliun wyxA+𝑜B+𝑜yyxwA+𝑜B+𝑜y
134 eliun wzB+𝑜xA+𝑜zzB+𝑜xwA+𝑜z
135 132 133 134 3imtr4g xOnBOnwyxA+𝑜B+𝑜ywzB+𝑜xA+𝑜z
136 135 ssrdv xOnBOnyxA+𝑜B+𝑜yzB+𝑜xA+𝑜z
137 54 136 sylan LimxBOnyxA+𝑜B+𝑜yzB+𝑜xA+𝑜z
138 137 adantl AOnLimxBOnyxA+𝑜B+𝑜yzB+𝑜xA+𝑜z
139 124 138 eqssd AOnLimxBOnzB+𝑜xA+𝑜z=yxA+𝑜B+𝑜y
140 52 139 eqtrd AOnLimxBOnA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
141 140 an12s LimxAOnBOnA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
142 141 adantr LimxAOnBOnyxA+𝑜B+𝑜y=A+𝑜B+𝑜yA+𝑜B+𝑜x=yxA+𝑜B+𝑜y
143 39 45 142 3eqtr4d LimxAOnBOnyxA+𝑜B+𝑜y=A+𝑜B+𝑜yA+𝑜B+𝑜x=A+𝑜B+𝑜x
144 143 exp31 LimxAOnBOnyxA+𝑜B+𝑜y=A+𝑜B+𝑜yA+𝑜B+𝑜x=A+𝑜B+𝑜x
145 4 8 12 16 23 37 144 tfinds3 COnAOnBOnA+𝑜B+𝑜C=A+𝑜B+𝑜C
146 145 com12 AOnBOnCOnA+𝑜B+𝑜C=A+𝑜B+𝑜C
147 146 3impia AOnBOnCOnA+𝑜B+𝑜C=A+𝑜B+𝑜C