Metamath Proof Explorer


Theorem oarec

Description: Recursive definition of ordinal addition. Exercise 25 of Enderton p. 240. (Contributed by NM, 26-Dec-2004) (Revised by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion oarec AOnBOnA+𝑜B=AranxBA+𝑜x

Proof

Step Hyp Ref Expression
1 oveq2 z=A+𝑜z=A+𝑜
2 mpteq1 z=xzA+𝑜x=xA+𝑜x
3 mpt0 xA+𝑜x=
4 2 3 eqtrdi z=xzA+𝑜x=
5 4 rneqd z=ranxzA+𝑜x=ran
6 rn0 ran=
7 5 6 eqtrdi z=ranxzA+𝑜x=
8 7 uneq2d z=AranxzA+𝑜x=A
9 1 8 eqeq12d z=A+𝑜z=AranxzA+𝑜xA+𝑜=A
10 oveq2 z=wA+𝑜z=A+𝑜w
11 mpteq1 z=wxzA+𝑜x=xwA+𝑜x
12 11 rneqd z=wranxzA+𝑜x=ranxwA+𝑜x
13 12 uneq2d z=wAranxzA+𝑜x=AranxwA+𝑜x
14 10 13 eqeq12d z=wA+𝑜z=AranxzA+𝑜xA+𝑜w=AranxwA+𝑜x
15 oveq2 z=sucwA+𝑜z=A+𝑜sucw
16 mpteq1 z=sucwxzA+𝑜x=xsucwA+𝑜x
17 16 rneqd z=sucwranxzA+𝑜x=ranxsucwA+𝑜x
18 17 uneq2d z=sucwAranxzA+𝑜x=AranxsucwA+𝑜x
19 15 18 eqeq12d z=sucwA+𝑜z=AranxzA+𝑜xA+𝑜sucw=AranxsucwA+𝑜x
20 oveq2 z=BA+𝑜z=A+𝑜B
21 mpteq1 z=BxzA+𝑜x=xBA+𝑜x
22 21 rneqd z=BranxzA+𝑜x=ranxBA+𝑜x
23 22 uneq2d z=BAranxzA+𝑜x=AranxBA+𝑜x
24 20 23 eqeq12d z=BA+𝑜z=AranxzA+𝑜xA+𝑜B=AranxBA+𝑜x
25 oa0 AOnA+𝑜=A
26 un0 A=A
27 25 26 eqtr4di AOnA+𝑜=A
28 uneq1 A+𝑜w=AranxwA+𝑜xA+𝑜wA+𝑜w=AranxwA+𝑜xA+𝑜w
29 unass AranxwA+𝑜xA+𝑜w=AranxwA+𝑜xA+𝑜w
30 rexun xwwy=A+𝑜xxwy=A+𝑜xxwy=A+𝑜x
31 df-suc sucw=ww
32 31 rexeqi xsucwy=A+𝑜xxwwy=A+𝑜x
33 eqid xwA+𝑜x=xwA+𝑜x
34 33 elrnmpt yVyranxwA+𝑜xxwy=A+𝑜x
35 34 elv yranxwA+𝑜xxwy=A+𝑜x
36 velsn yA+𝑜wy=A+𝑜w
37 vex wV
38 oveq2 x=wA+𝑜x=A+𝑜w
39 38 eqeq2d x=wy=A+𝑜xy=A+𝑜w
40 37 39 rexsn xwy=A+𝑜xy=A+𝑜w
41 36 40 bitr4i yA+𝑜wxwy=A+𝑜x
42 35 41 orbi12i yranxwA+𝑜xyA+𝑜wxwy=A+𝑜xxwy=A+𝑜x
43 30 32 42 3bitr4i xsucwy=A+𝑜xyranxwA+𝑜xyA+𝑜w
44 eqid xsucwA+𝑜x=xsucwA+𝑜x
45 ovex A+𝑜xV
46 44 45 elrnmpti yranxsucwA+𝑜xxsucwy=A+𝑜x
47 elun yranxwA+𝑜xA+𝑜wyranxwA+𝑜xyA+𝑜w
48 43 46 47 3bitr4i yranxsucwA+𝑜xyranxwA+𝑜xA+𝑜w
49 48 eqriv ranxsucwA+𝑜x=ranxwA+𝑜xA+𝑜w
50 49 uneq2i AranxsucwA+𝑜x=AranxwA+𝑜xA+𝑜w
51 29 50 eqtr4i AranxwA+𝑜xA+𝑜w=AranxsucwA+𝑜x
52 28 51 eqtrdi A+𝑜w=AranxwA+𝑜xA+𝑜wA+𝑜w=AranxsucwA+𝑜x
53 oasuc AOnwOnA+𝑜sucw=sucA+𝑜w
54 df-suc sucA+𝑜w=A+𝑜wA+𝑜w
55 53 54 eqtrdi AOnwOnA+𝑜sucw=A+𝑜wA+𝑜w
56 55 eqeq1d AOnwOnA+𝑜sucw=AranxsucwA+𝑜xA+𝑜wA+𝑜w=AranxsucwA+𝑜x
57 52 56 imbitrrid AOnwOnA+𝑜w=AranxwA+𝑜xA+𝑜sucw=AranxsucwA+𝑜x
58 57 expcom wOnAOnA+𝑜w=AranxwA+𝑜xA+𝑜sucw=AranxsucwA+𝑜x
59 vex zV
60 oalim AOnzVLimzA+𝑜z=wzA+𝑜w
61 59 60 mpanr1 AOnLimzA+𝑜z=wzA+𝑜w
62 61 ancoms LimzAOnA+𝑜z=wzA+𝑜w
63 62 adantr LimzAOnwzA+𝑜w=AranxwA+𝑜xA+𝑜z=wzA+𝑜w
64 iuneq2 wzA+𝑜w=AranxwA+𝑜xwzA+𝑜w=wzAranxwA+𝑜x
65 64 adantl LimzAOnwzA+𝑜w=AranxwA+𝑜xwzA+𝑜w=wzAranxwA+𝑜x
66 iunun wzAranxwA+𝑜x=wzAwzranxwA+𝑜x
67 0ellim Limzz
68 ne0i zz
69 iunconst zwzA=A
70 67 68 69 3syl LimzwzA=A
71 df-rex xwy=A+𝑜xxxwy=A+𝑜x
72 35 71 bitri yranxwA+𝑜xxxwy=A+𝑜x
73 72 rexbii wzyranxwA+𝑜xwzxxwy=A+𝑜x
74 eluni2 xzwzxw
75 74 anbi1i xzy=A+𝑜xwzxwy=A+𝑜x
76 r19.41v wzxwy=A+𝑜xwzxwy=A+𝑜x
77 75 76 bitr4i xzy=A+𝑜xwzxwy=A+𝑜x
78 77 exbii xxzy=A+𝑜xxwzxwy=A+𝑜x
79 df-rex xzy=A+𝑜xxxzy=A+𝑜x
80 rexcom4 wzxxwy=A+𝑜xxwzxwy=A+𝑜x
81 78 79 80 3bitr4i xzy=A+𝑜xwzxxwy=A+𝑜x
82 73 81 bitr4i wzyranxwA+𝑜xxzy=A+𝑜x
83 limuni Limzz=z
84 83 rexeqdv Limzxzy=A+𝑜xxzy=A+𝑜x
85 82 84 bitr4id LimzwzyranxwA+𝑜xxzy=A+𝑜x
86 eliun ywzranxwA+𝑜xwzyranxwA+𝑜x
87 eqid xzA+𝑜x=xzA+𝑜x
88 87 45 elrnmpti yranxzA+𝑜xxzy=A+𝑜x
89 85 86 88 3bitr4g LimzywzranxwA+𝑜xyranxzA+𝑜x
90 89 eqrdv LimzwzranxwA+𝑜x=ranxzA+𝑜x
91 70 90 uneq12d LimzwzAwzranxwA+𝑜x=AranxzA+𝑜x
92 66 91 eqtrid LimzwzAranxwA+𝑜x=AranxzA+𝑜x
93 92 ad2antrr LimzAOnwzA+𝑜w=AranxwA+𝑜xwzAranxwA+𝑜x=AranxzA+𝑜x
94 63 65 93 3eqtrd LimzAOnwzA+𝑜w=AranxwA+𝑜xA+𝑜z=AranxzA+𝑜x
95 94 exp31 LimzAOnwzA+𝑜w=AranxwA+𝑜xA+𝑜z=AranxzA+𝑜x
96 9 14 19 24 27 58 95 tfinds3 BOnAOnA+𝑜B=AranxBA+𝑜x
97 96 impcom AOnBOnA+𝑜B=AranxBA+𝑜x