Metamath Proof Explorer


Theorem oarec

Description: Recursive definition of ordinal addition. Exercise 25 of Enderton p. 240. (Contributed by NM, 26-Dec-2004) (Revised by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion oarec A On B On A + 𝑜 B = A ran x B A + 𝑜 x

Proof

Step Hyp Ref Expression
1 oveq2 z = A + 𝑜 z = A + 𝑜
2 mpteq1 z = x z A + 𝑜 x = x A + 𝑜 x
3 mpt0 x A + 𝑜 x =
4 2 3 eqtrdi z = x z A + 𝑜 x =
5 4 rneqd z = ran x z A + 𝑜 x = ran
6 rn0 ran =
7 5 6 eqtrdi z = ran x z A + 𝑜 x =
8 7 uneq2d z = A ran x z A + 𝑜 x = A
9 1 8 eqeq12d z = A + 𝑜 z = A ran x z A + 𝑜 x A + 𝑜 = A
10 oveq2 z = w A + 𝑜 z = A + 𝑜 w
11 mpteq1 z = w x z A + 𝑜 x = x w A + 𝑜 x
12 11 rneqd z = w ran x z A + 𝑜 x = ran x w A + 𝑜 x
13 12 uneq2d z = w A ran x z A + 𝑜 x = A ran x w A + 𝑜 x
14 10 13 eqeq12d z = w A + 𝑜 z = A ran x z A + 𝑜 x A + 𝑜 w = A ran x w A + 𝑜 x
15 oveq2 z = suc w A + 𝑜 z = A + 𝑜 suc w
16 mpteq1 z = suc w x z A + 𝑜 x = x suc w A + 𝑜 x
17 16 rneqd z = suc w ran x z A + 𝑜 x = ran x suc w A + 𝑜 x
18 17 uneq2d z = suc w A ran x z A + 𝑜 x = A ran x suc w A + 𝑜 x
19 15 18 eqeq12d z = suc w A + 𝑜 z = A ran x z A + 𝑜 x A + 𝑜 suc w = A ran x suc w A + 𝑜 x
20 oveq2 z = B A + 𝑜 z = A + 𝑜 B
21 mpteq1 z = B x z A + 𝑜 x = x B A + 𝑜 x
22 21 rneqd z = B ran x z A + 𝑜 x = ran x B A + 𝑜 x
23 22 uneq2d z = B A ran x z A + 𝑜 x = A ran x B A + 𝑜 x
24 20 23 eqeq12d z = B A + 𝑜 z = A ran x z A + 𝑜 x A + 𝑜 B = A ran x B A + 𝑜 x
25 oa0 A On A + 𝑜 = A
26 un0 A = A
27 25 26 eqtr4di A On A + 𝑜 = A
28 uneq1 A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 w A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 w
29 unass A ran x w A + 𝑜 x A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 w
30 rexun x w w y = A + 𝑜 x x w y = A + 𝑜 x x w y = A + 𝑜 x
31 df-suc suc w = w w
32 31 rexeqi x suc w y = A + 𝑜 x x w w y = A + 𝑜 x
33 eqid x w A + 𝑜 x = x w A + 𝑜 x
34 33 elrnmpt y V y ran x w A + 𝑜 x x w y = A + 𝑜 x
35 34 elv y ran x w A + 𝑜 x x w y = A + 𝑜 x
36 velsn y A + 𝑜 w y = A + 𝑜 w
37 vex w V
38 oveq2 x = w A + 𝑜 x = A + 𝑜 w
39 38 eqeq2d x = w y = A + 𝑜 x y = A + 𝑜 w
40 37 39 rexsn x w y = A + 𝑜 x y = A + 𝑜 w
41 36 40 bitr4i y A + 𝑜 w x w y = A + 𝑜 x
42 35 41 orbi12i y ran x w A + 𝑜 x y A + 𝑜 w x w y = A + 𝑜 x x w y = A + 𝑜 x
43 30 32 42 3bitr4i x suc w y = A + 𝑜 x y ran x w A + 𝑜 x y A + 𝑜 w
44 eqid x suc w A + 𝑜 x = x suc w A + 𝑜 x
45 ovex A + 𝑜 x V
46 44 45 elrnmpti y ran x suc w A + 𝑜 x x suc w y = A + 𝑜 x
47 elun y ran x w A + 𝑜 x A + 𝑜 w y ran x w A + 𝑜 x y A + 𝑜 w
48 43 46 47 3bitr4i y ran x suc w A + 𝑜 x y ran x w A + 𝑜 x A + 𝑜 w
49 48 eqriv ran x suc w A + 𝑜 x = ran x w A + 𝑜 x A + 𝑜 w
50 49 uneq2i A ran x suc w A + 𝑜 x = A ran x w A + 𝑜 x A + 𝑜 w
51 29 50 eqtr4i A ran x w A + 𝑜 x A + 𝑜 w = A ran x suc w A + 𝑜 x
52 28 51 eqtrdi A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 w A + 𝑜 w = A ran x suc w A + 𝑜 x
53 oasuc A On w On A + 𝑜 suc w = suc A + 𝑜 w
54 df-suc suc A + 𝑜 w = A + 𝑜 w A + 𝑜 w
55 53 54 eqtrdi A On w On A + 𝑜 suc w = A + 𝑜 w A + 𝑜 w
56 55 eqeq1d A On w On A + 𝑜 suc w = A ran x suc w A + 𝑜 x A + 𝑜 w A + 𝑜 w = A ran x suc w A + 𝑜 x
57 52 56 syl5ibr A On w On A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 suc w = A ran x suc w A + 𝑜 x
58 57 expcom w On A On A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 suc w = A ran x suc w A + 𝑜 x
59 vex z V
60 oalim A On z V Lim z A + 𝑜 z = w z A + 𝑜 w
61 59 60 mpanr1 A On Lim z A + 𝑜 z = w z A + 𝑜 w
62 61 ancoms Lim z A On A + 𝑜 z = w z A + 𝑜 w
63 62 adantr Lim z A On w z A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 z = w z A + 𝑜 w
64 iuneq2 w z A + 𝑜 w = A ran x w A + 𝑜 x w z A + 𝑜 w = w z A ran x w A + 𝑜 x
65 64 adantl Lim z A On w z A + 𝑜 w = A ran x w A + 𝑜 x w z A + 𝑜 w = w z A ran x w A + 𝑜 x
66 iunun w z A ran x w A + 𝑜 x = w z A w z ran x w A + 𝑜 x
67 0ellim Lim z z
68 ne0i z z
69 iunconst z w z A = A
70 67 68 69 3syl Lim z w z A = A
71 df-rex x w y = A + 𝑜 x x x w y = A + 𝑜 x
72 35 71 bitri y ran x w A + 𝑜 x x x w y = A + 𝑜 x
73 72 rexbii w z y ran x w A + 𝑜 x w z x x w y = A + 𝑜 x
74 eluni2 x z w z x w
75 74 anbi1i x z y = A + 𝑜 x w z x w y = A + 𝑜 x
76 r19.41v w z x w y = A + 𝑜 x w z x w y = A + 𝑜 x
77 75 76 bitr4i x z y = A + 𝑜 x w z x w y = A + 𝑜 x
78 77 exbii x x z y = A + 𝑜 x x w z x w y = A + 𝑜 x
79 df-rex x z y = A + 𝑜 x x x z y = A + 𝑜 x
80 rexcom4 w z x x w y = A + 𝑜 x x w z x w y = A + 𝑜 x
81 78 79 80 3bitr4i x z y = A + 𝑜 x w z x x w y = A + 𝑜 x
82 73 81 bitr4i w z y ran x w A + 𝑜 x x z y = A + 𝑜 x
83 limuni Lim z z = z
84 83 rexeqdv Lim z x z y = A + 𝑜 x x z y = A + 𝑜 x
85 82 84 bitr4id Lim z w z y ran x w A + 𝑜 x x z y = A + 𝑜 x
86 eliun y w z ran x w A + 𝑜 x w z y ran x w A + 𝑜 x
87 eqid x z A + 𝑜 x = x z A + 𝑜 x
88 87 45 elrnmpti y ran x z A + 𝑜 x x z y = A + 𝑜 x
89 85 86 88 3bitr4g Lim z y w z ran x w A + 𝑜 x y ran x z A + 𝑜 x
90 89 eqrdv Lim z w z ran x w A + 𝑜 x = ran x z A + 𝑜 x
91 70 90 uneq12d Lim z w z A w z ran x w A + 𝑜 x = A ran x z A + 𝑜 x
92 66 91 eqtrid Lim z w z A ran x w A + 𝑜 x = A ran x z A + 𝑜 x
93 92 ad2antrr Lim z A On w z A + 𝑜 w = A ran x w A + 𝑜 x w z A ran x w A + 𝑜 x = A ran x z A + 𝑜 x
94 63 65 93 3eqtrd Lim z A On w z A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 z = A ran x z A + 𝑜 x
95 94 exp31 Lim z A On w z A + 𝑜 w = A ran x w A + 𝑜 x A + 𝑜 z = A ran x z A + 𝑜 x
96 9 14 19 24 27 58 95 tfinds3 B On A On A + 𝑜 B = A ran x B A + 𝑜 x
97 96 impcom A On B On A + 𝑜 B = A ran x B A + 𝑜 x