Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
mpteq1 |
|
3 |
|
mpt0 |
|
4 |
2 3
|
eqtrdi |
|
5 |
4
|
rneqd |
|
6 |
|
rn0 |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
uneq2d |
|
9 |
1 8
|
eqeq12d |
|
10 |
|
oveq2 |
|
11 |
|
mpteq1 |
|
12 |
11
|
rneqd |
|
13 |
12
|
uneq2d |
|
14 |
10 13
|
eqeq12d |
|
15 |
|
oveq2 |
|
16 |
|
mpteq1 |
|
17 |
16
|
rneqd |
|
18 |
17
|
uneq2d |
|
19 |
15 18
|
eqeq12d |
|
20 |
|
oveq2 |
|
21 |
|
mpteq1 |
|
22 |
21
|
rneqd |
|
23 |
22
|
uneq2d |
|
24 |
20 23
|
eqeq12d |
|
25 |
|
oa0 |
|
26 |
|
un0 |
|
27 |
25 26
|
eqtr4di |
|
28 |
|
uneq1 |
|
29 |
|
unass |
|
30 |
|
rexun |
|
31 |
|
df-suc |
|
32 |
31
|
rexeqi |
|
33 |
|
eqid |
|
34 |
33
|
elrnmpt |
|
35 |
34
|
elv |
|
36 |
|
velsn |
|
37 |
|
vex |
|
38 |
|
oveq2 |
|
39 |
38
|
eqeq2d |
|
40 |
37 39
|
rexsn |
|
41 |
36 40
|
bitr4i |
|
42 |
35 41
|
orbi12i |
|
43 |
30 32 42
|
3bitr4i |
|
44 |
|
eqid |
|
45 |
|
ovex |
|
46 |
44 45
|
elrnmpti |
|
47 |
|
elun |
|
48 |
43 46 47
|
3bitr4i |
|
49 |
48
|
eqriv |
|
50 |
49
|
uneq2i |
|
51 |
29 50
|
eqtr4i |
|
52 |
28 51
|
eqtrdi |
|
53 |
|
oasuc |
|
54 |
|
df-suc |
|
55 |
53 54
|
eqtrdi |
|
56 |
55
|
eqeq1d |
|
57 |
52 56
|
syl5ibr |
|
58 |
57
|
expcom |
|
59 |
|
vex |
|
60 |
|
oalim |
|
61 |
59 60
|
mpanr1 |
|
62 |
61
|
ancoms |
|
63 |
62
|
adantr |
|
64 |
|
iuneq2 |
|
65 |
64
|
adantl |
|
66 |
|
iunun |
|
67 |
|
0ellim |
|
68 |
|
ne0i |
|
69 |
|
iunconst |
|
70 |
67 68 69
|
3syl |
|
71 |
|
df-rex |
|
72 |
35 71
|
bitri |
|
73 |
72
|
rexbii |
|
74 |
|
eluni2 |
|
75 |
74
|
anbi1i |
|
76 |
|
r19.41v |
|
77 |
75 76
|
bitr4i |
|
78 |
77
|
exbii |
|
79 |
|
df-rex |
|
80 |
|
rexcom4 |
|
81 |
78 79 80
|
3bitr4i |
|
82 |
73 81
|
bitr4i |
|
83 |
|
limuni |
|
84 |
83
|
rexeqdv |
|
85 |
82 84
|
bitr4id |
|
86 |
|
eliun |
|
87 |
|
eqid |
|
88 |
87 45
|
elrnmpti |
|
89 |
85 86 88
|
3bitr4g |
|
90 |
89
|
eqrdv |
|
91 |
70 90
|
uneq12d |
|
92 |
66 91
|
eqtrid |
|
93 |
92
|
ad2antrr |
|
94 |
63 65 93
|
3eqtrd |
|
95 |
94
|
exp31 |
|
96 |
9 14 19 24 27 58 95
|
tfinds3 |
|
97 |
96
|
impcom |
|