| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( z = (/) -> ( A +o z ) = ( A +o (/) ) ) |
| 2 |
|
mpteq1 |
|- ( z = (/) -> ( x e. z |-> ( A +o x ) ) = ( x e. (/) |-> ( A +o x ) ) ) |
| 3 |
|
mpt0 |
|- ( x e. (/) |-> ( A +o x ) ) = (/) |
| 4 |
2 3
|
eqtrdi |
|- ( z = (/) -> ( x e. z |-> ( A +o x ) ) = (/) ) |
| 5 |
4
|
rneqd |
|- ( z = (/) -> ran ( x e. z |-> ( A +o x ) ) = ran (/) ) |
| 6 |
|
rn0 |
|- ran (/) = (/) |
| 7 |
5 6
|
eqtrdi |
|- ( z = (/) -> ran ( x e. z |-> ( A +o x ) ) = (/) ) |
| 8 |
7
|
uneq2d |
|- ( z = (/) -> ( A u. ran ( x e. z |-> ( A +o x ) ) ) = ( A u. (/) ) ) |
| 9 |
1 8
|
eqeq12d |
|- ( z = (/) -> ( ( A +o z ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) <-> ( A +o (/) ) = ( A u. (/) ) ) ) |
| 10 |
|
oveq2 |
|- ( z = w -> ( A +o z ) = ( A +o w ) ) |
| 11 |
|
mpteq1 |
|- ( z = w -> ( x e. z |-> ( A +o x ) ) = ( x e. w |-> ( A +o x ) ) ) |
| 12 |
11
|
rneqd |
|- ( z = w -> ran ( x e. z |-> ( A +o x ) ) = ran ( x e. w |-> ( A +o x ) ) ) |
| 13 |
12
|
uneq2d |
|- ( z = w -> ( A u. ran ( x e. z |-> ( A +o x ) ) ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) |
| 14 |
10 13
|
eqeq12d |
|- ( z = w -> ( ( A +o z ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) <-> ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) ) |
| 15 |
|
oveq2 |
|- ( z = suc w -> ( A +o z ) = ( A +o suc w ) ) |
| 16 |
|
mpteq1 |
|- ( z = suc w -> ( x e. z |-> ( A +o x ) ) = ( x e. suc w |-> ( A +o x ) ) ) |
| 17 |
16
|
rneqd |
|- ( z = suc w -> ran ( x e. z |-> ( A +o x ) ) = ran ( x e. suc w |-> ( A +o x ) ) ) |
| 18 |
17
|
uneq2d |
|- ( z = suc w -> ( A u. ran ( x e. z |-> ( A +o x ) ) ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) ) |
| 19 |
15 18
|
eqeq12d |
|- ( z = suc w -> ( ( A +o z ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) <-> ( A +o suc w ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) ) ) |
| 20 |
|
oveq2 |
|- ( z = B -> ( A +o z ) = ( A +o B ) ) |
| 21 |
|
mpteq1 |
|- ( z = B -> ( x e. z |-> ( A +o x ) ) = ( x e. B |-> ( A +o x ) ) ) |
| 22 |
21
|
rneqd |
|- ( z = B -> ran ( x e. z |-> ( A +o x ) ) = ran ( x e. B |-> ( A +o x ) ) ) |
| 23 |
22
|
uneq2d |
|- ( z = B -> ( A u. ran ( x e. z |-> ( A +o x ) ) ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
| 24 |
20 23
|
eqeq12d |
|- ( z = B -> ( ( A +o z ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) <-> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) ) |
| 25 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
| 26 |
|
un0 |
|- ( A u. (/) ) = A |
| 27 |
25 26
|
eqtr4di |
|- ( A e. On -> ( A +o (/) ) = ( A u. (/) ) ) |
| 28 |
|
uneq1 |
|- ( ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) -> ( ( A +o w ) u. { ( A +o w ) } ) = ( ( A u. ran ( x e. w |-> ( A +o x ) ) ) u. { ( A +o w ) } ) ) |
| 29 |
|
unass |
|- ( ( A u. ran ( x e. w |-> ( A +o x ) ) ) u. { ( A +o w ) } ) = ( A u. ( ran ( x e. w |-> ( A +o x ) ) u. { ( A +o w ) } ) ) |
| 30 |
|
rexun |
|- ( E. x e. ( w u. { w } ) y = ( A +o x ) <-> ( E. x e. w y = ( A +o x ) \/ E. x e. { w } y = ( A +o x ) ) ) |
| 31 |
|
df-suc |
|- suc w = ( w u. { w } ) |
| 32 |
31
|
rexeqi |
|- ( E. x e. suc w y = ( A +o x ) <-> E. x e. ( w u. { w } ) y = ( A +o x ) ) |
| 33 |
|
eqid |
|- ( x e. w |-> ( A +o x ) ) = ( x e. w |-> ( A +o x ) ) |
| 34 |
33
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( x e. w |-> ( A +o x ) ) <-> E. x e. w y = ( A +o x ) ) ) |
| 35 |
34
|
elv |
|- ( y e. ran ( x e. w |-> ( A +o x ) ) <-> E. x e. w y = ( A +o x ) ) |
| 36 |
|
velsn |
|- ( y e. { ( A +o w ) } <-> y = ( A +o w ) ) |
| 37 |
|
vex |
|- w e. _V |
| 38 |
|
oveq2 |
|- ( x = w -> ( A +o x ) = ( A +o w ) ) |
| 39 |
38
|
eqeq2d |
|- ( x = w -> ( y = ( A +o x ) <-> y = ( A +o w ) ) ) |
| 40 |
37 39
|
rexsn |
|- ( E. x e. { w } y = ( A +o x ) <-> y = ( A +o w ) ) |
| 41 |
36 40
|
bitr4i |
|- ( y e. { ( A +o w ) } <-> E. x e. { w } y = ( A +o x ) ) |
| 42 |
35 41
|
orbi12i |
|- ( ( y e. ran ( x e. w |-> ( A +o x ) ) \/ y e. { ( A +o w ) } ) <-> ( E. x e. w y = ( A +o x ) \/ E. x e. { w } y = ( A +o x ) ) ) |
| 43 |
30 32 42
|
3bitr4i |
|- ( E. x e. suc w y = ( A +o x ) <-> ( y e. ran ( x e. w |-> ( A +o x ) ) \/ y e. { ( A +o w ) } ) ) |
| 44 |
|
eqid |
|- ( x e. suc w |-> ( A +o x ) ) = ( x e. suc w |-> ( A +o x ) ) |
| 45 |
|
ovex |
|- ( A +o x ) e. _V |
| 46 |
44 45
|
elrnmpti |
|- ( y e. ran ( x e. suc w |-> ( A +o x ) ) <-> E. x e. suc w y = ( A +o x ) ) |
| 47 |
|
elun |
|- ( y e. ( ran ( x e. w |-> ( A +o x ) ) u. { ( A +o w ) } ) <-> ( y e. ran ( x e. w |-> ( A +o x ) ) \/ y e. { ( A +o w ) } ) ) |
| 48 |
43 46 47
|
3bitr4i |
|- ( y e. ran ( x e. suc w |-> ( A +o x ) ) <-> y e. ( ran ( x e. w |-> ( A +o x ) ) u. { ( A +o w ) } ) ) |
| 49 |
48
|
eqriv |
|- ran ( x e. suc w |-> ( A +o x ) ) = ( ran ( x e. w |-> ( A +o x ) ) u. { ( A +o w ) } ) |
| 50 |
49
|
uneq2i |
|- ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) = ( A u. ( ran ( x e. w |-> ( A +o x ) ) u. { ( A +o w ) } ) ) |
| 51 |
29 50
|
eqtr4i |
|- ( ( A u. ran ( x e. w |-> ( A +o x ) ) ) u. { ( A +o w ) } ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) |
| 52 |
28 51
|
eqtrdi |
|- ( ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) -> ( ( A +o w ) u. { ( A +o w ) } ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) ) |
| 53 |
|
oasuc |
|- ( ( A e. On /\ w e. On ) -> ( A +o suc w ) = suc ( A +o w ) ) |
| 54 |
|
df-suc |
|- suc ( A +o w ) = ( ( A +o w ) u. { ( A +o w ) } ) |
| 55 |
53 54
|
eqtrdi |
|- ( ( A e. On /\ w e. On ) -> ( A +o suc w ) = ( ( A +o w ) u. { ( A +o w ) } ) ) |
| 56 |
55
|
eqeq1d |
|- ( ( A e. On /\ w e. On ) -> ( ( A +o suc w ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) <-> ( ( A +o w ) u. { ( A +o w ) } ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) ) ) |
| 57 |
52 56
|
imbitrrid |
|- ( ( A e. On /\ w e. On ) -> ( ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) -> ( A +o suc w ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) ) ) |
| 58 |
57
|
expcom |
|- ( w e. On -> ( A e. On -> ( ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) -> ( A +o suc w ) = ( A u. ran ( x e. suc w |-> ( A +o x ) ) ) ) ) ) |
| 59 |
|
vex |
|- z e. _V |
| 60 |
|
oalim |
|- ( ( A e. On /\ ( z e. _V /\ Lim z ) ) -> ( A +o z ) = U_ w e. z ( A +o w ) ) |
| 61 |
59 60
|
mpanr1 |
|- ( ( A e. On /\ Lim z ) -> ( A +o z ) = U_ w e. z ( A +o w ) ) |
| 62 |
61
|
ancoms |
|- ( ( Lim z /\ A e. On ) -> ( A +o z ) = U_ w e. z ( A +o w ) ) |
| 63 |
62
|
adantr |
|- ( ( ( Lim z /\ A e. On ) /\ A. w e. z ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) -> ( A +o z ) = U_ w e. z ( A +o w ) ) |
| 64 |
|
iuneq2 |
|- ( A. w e. z ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) -> U_ w e. z ( A +o w ) = U_ w e. z ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) |
| 65 |
64
|
adantl |
|- ( ( ( Lim z /\ A e. On ) /\ A. w e. z ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) -> U_ w e. z ( A +o w ) = U_ w e. z ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) |
| 66 |
|
iunun |
|- U_ w e. z ( A u. ran ( x e. w |-> ( A +o x ) ) ) = ( U_ w e. z A u. U_ w e. z ran ( x e. w |-> ( A +o x ) ) ) |
| 67 |
|
0ellim |
|- ( Lim z -> (/) e. z ) |
| 68 |
|
ne0i |
|- ( (/) e. z -> z =/= (/) ) |
| 69 |
|
iunconst |
|- ( z =/= (/) -> U_ w e. z A = A ) |
| 70 |
67 68 69
|
3syl |
|- ( Lim z -> U_ w e. z A = A ) |
| 71 |
|
df-rex |
|- ( E. x e. w y = ( A +o x ) <-> E. x ( x e. w /\ y = ( A +o x ) ) ) |
| 72 |
35 71
|
bitri |
|- ( y e. ran ( x e. w |-> ( A +o x ) ) <-> E. x ( x e. w /\ y = ( A +o x ) ) ) |
| 73 |
72
|
rexbii |
|- ( E. w e. z y e. ran ( x e. w |-> ( A +o x ) ) <-> E. w e. z E. x ( x e. w /\ y = ( A +o x ) ) ) |
| 74 |
|
eluni2 |
|- ( x e. U. z <-> E. w e. z x e. w ) |
| 75 |
74
|
anbi1i |
|- ( ( x e. U. z /\ y = ( A +o x ) ) <-> ( E. w e. z x e. w /\ y = ( A +o x ) ) ) |
| 76 |
|
r19.41v |
|- ( E. w e. z ( x e. w /\ y = ( A +o x ) ) <-> ( E. w e. z x e. w /\ y = ( A +o x ) ) ) |
| 77 |
75 76
|
bitr4i |
|- ( ( x e. U. z /\ y = ( A +o x ) ) <-> E. w e. z ( x e. w /\ y = ( A +o x ) ) ) |
| 78 |
77
|
exbii |
|- ( E. x ( x e. U. z /\ y = ( A +o x ) ) <-> E. x E. w e. z ( x e. w /\ y = ( A +o x ) ) ) |
| 79 |
|
df-rex |
|- ( E. x e. U. z y = ( A +o x ) <-> E. x ( x e. U. z /\ y = ( A +o x ) ) ) |
| 80 |
|
rexcom4 |
|- ( E. w e. z E. x ( x e. w /\ y = ( A +o x ) ) <-> E. x E. w e. z ( x e. w /\ y = ( A +o x ) ) ) |
| 81 |
78 79 80
|
3bitr4i |
|- ( E. x e. U. z y = ( A +o x ) <-> E. w e. z E. x ( x e. w /\ y = ( A +o x ) ) ) |
| 82 |
73 81
|
bitr4i |
|- ( E. w e. z y e. ran ( x e. w |-> ( A +o x ) ) <-> E. x e. U. z y = ( A +o x ) ) |
| 83 |
|
limuni |
|- ( Lim z -> z = U. z ) |
| 84 |
83
|
rexeqdv |
|- ( Lim z -> ( E. x e. z y = ( A +o x ) <-> E. x e. U. z y = ( A +o x ) ) ) |
| 85 |
82 84
|
bitr4id |
|- ( Lim z -> ( E. w e. z y e. ran ( x e. w |-> ( A +o x ) ) <-> E. x e. z y = ( A +o x ) ) ) |
| 86 |
|
eliun |
|- ( y e. U_ w e. z ran ( x e. w |-> ( A +o x ) ) <-> E. w e. z y e. ran ( x e. w |-> ( A +o x ) ) ) |
| 87 |
|
eqid |
|- ( x e. z |-> ( A +o x ) ) = ( x e. z |-> ( A +o x ) ) |
| 88 |
87 45
|
elrnmpti |
|- ( y e. ran ( x e. z |-> ( A +o x ) ) <-> E. x e. z y = ( A +o x ) ) |
| 89 |
85 86 88
|
3bitr4g |
|- ( Lim z -> ( y e. U_ w e. z ran ( x e. w |-> ( A +o x ) ) <-> y e. ran ( x e. z |-> ( A +o x ) ) ) ) |
| 90 |
89
|
eqrdv |
|- ( Lim z -> U_ w e. z ran ( x e. w |-> ( A +o x ) ) = ran ( x e. z |-> ( A +o x ) ) ) |
| 91 |
70 90
|
uneq12d |
|- ( Lim z -> ( U_ w e. z A u. U_ w e. z ran ( x e. w |-> ( A +o x ) ) ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) ) |
| 92 |
66 91
|
eqtrid |
|- ( Lim z -> U_ w e. z ( A u. ran ( x e. w |-> ( A +o x ) ) ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) ) |
| 93 |
92
|
ad2antrr |
|- ( ( ( Lim z /\ A e. On ) /\ A. w e. z ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) -> U_ w e. z ( A u. ran ( x e. w |-> ( A +o x ) ) ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) ) |
| 94 |
63 65 93
|
3eqtrd |
|- ( ( ( Lim z /\ A e. On ) /\ A. w e. z ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) ) -> ( A +o z ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) ) |
| 95 |
94
|
exp31 |
|- ( Lim z -> ( A e. On -> ( A. w e. z ( A +o w ) = ( A u. ran ( x e. w |-> ( A +o x ) ) ) -> ( A +o z ) = ( A u. ran ( x e. z |-> ( A +o x ) ) ) ) ) ) |
| 96 |
9 14 19 24 27 58 95
|
tfinds3 |
|- ( B e. On -> ( A e. On -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) ) |
| 97 |
96
|
impcom |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |