Step |
Hyp |
Ref |
Expression |
1 |
|
rdgsuc |
|- ( B e. On -> ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
2 |
1
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
3 |
|
suceloni |
|- ( B e. On -> suc B e. On ) |
4 |
|
oav |
|- ( ( A e. On /\ suc B e. On ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
5 |
3 4
|
sylan2 |
|- ( ( A e. On /\ B e. On ) -> ( A +o suc B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` suc B ) ) |
6 |
|
ovex |
|- ( A +o B ) e. _V |
7 |
|
suceq |
|- ( x = ( A +o B ) -> suc x = suc ( A +o B ) ) |
8 |
|
eqid |
|- ( x e. _V |-> suc x ) = ( x e. _V |-> suc x ) |
9 |
6
|
sucex |
|- suc ( A +o B ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( ( A +o B ) e. _V -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) ) |
11 |
6 10
|
ax-mp |
|- ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = suc ( A +o B ) |
12 |
|
oav |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
13 |
12
|
fveq2d |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. _V |-> suc x ) ` ( A +o B ) ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
14 |
11 13
|
eqtr3id |
|- ( ( A e. On /\ B e. On ) -> suc ( A +o B ) = ( ( x e. _V |-> suc x ) ` ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) ) |
15 |
2 5 14
|
3eqtr4d |
|- ( ( A e. On /\ B e. On ) -> ( A +o suc B ) = suc ( A +o B ) ) |