| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oesuclem.1 |
|- Lim X |
| 2 |
|
oesuclem.2 |
|- ( B e. X -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 3 |
|
oveq1 |
|- ( A = (/) -> ( A ^o suc B ) = ( (/) ^o suc B ) ) |
| 4 |
|
limord |
|- ( Lim X -> Ord X ) |
| 5 |
1 4
|
ax-mp |
|- Ord X |
| 6 |
|
ordelord |
|- ( ( Ord X /\ B e. X ) -> Ord B ) |
| 7 |
5 6
|
mpan |
|- ( B e. X -> Ord B ) |
| 8 |
|
0elsuc |
|- ( Ord B -> (/) e. suc B ) |
| 9 |
7 8
|
syl |
|- ( B e. X -> (/) e. suc B ) |
| 10 |
|
limsuc |
|- ( Lim X -> ( B e. X <-> suc B e. X ) ) |
| 11 |
1 10
|
ax-mp |
|- ( B e. X <-> suc B e. X ) |
| 12 |
|
ordelon |
|- ( ( Ord X /\ suc B e. X ) -> suc B e. On ) |
| 13 |
5 12
|
mpan |
|- ( suc B e. X -> suc B e. On ) |
| 14 |
|
oe0m1 |
|- ( suc B e. On -> ( (/) e. suc B <-> ( (/) ^o suc B ) = (/) ) ) |
| 15 |
13 14
|
syl |
|- ( suc B e. X -> ( (/) e. suc B <-> ( (/) ^o suc B ) = (/) ) ) |
| 16 |
11 15
|
sylbi |
|- ( B e. X -> ( (/) e. suc B <-> ( (/) ^o suc B ) = (/) ) ) |
| 17 |
9 16
|
mpbid |
|- ( B e. X -> ( (/) ^o suc B ) = (/) ) |
| 18 |
3 17
|
sylan9eqr |
|- ( ( B e. X /\ A = (/) ) -> ( A ^o suc B ) = (/) ) |
| 19 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
| 20 |
|
id |
|- ( A = (/) -> A = (/) ) |
| 21 |
19 20
|
oveq12d |
|- ( A = (/) -> ( ( A ^o B ) .o A ) = ( ( (/) ^o B ) .o (/) ) ) |
| 22 |
|
ordelon |
|- ( ( Ord X /\ B e. X ) -> B e. On ) |
| 23 |
5 22
|
mpan |
|- ( B e. X -> B e. On ) |
| 24 |
|
oveq2 |
|- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
| 25 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
| 26 |
|
1on |
|- 1o e. On |
| 27 |
25 26
|
eqeltri |
|- ( (/) ^o (/) ) e. On |
| 28 |
24 27
|
eqeltrdi |
|- ( B = (/) -> ( (/) ^o B ) e. On ) |
| 29 |
28
|
adantl |
|- ( ( B e. X /\ B = (/) ) -> ( (/) ^o B ) e. On ) |
| 30 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
| 31 |
23 30
|
syl |
|- ( B e. X -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
| 32 |
31
|
biimpa |
|- ( ( B e. X /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 33 |
|
0elon |
|- (/) e. On |
| 34 |
32 33
|
eqeltrdi |
|- ( ( B e. X /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 35 |
34
|
adantll |
|- ( ( ( B e. On /\ B e. X ) /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 36 |
29 35
|
oe0lem |
|- ( ( B e. On /\ B e. X ) -> ( (/) ^o B ) e. On ) |
| 37 |
23 36
|
mpancom |
|- ( B e. X -> ( (/) ^o B ) e. On ) |
| 38 |
|
om0 |
|- ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) .o (/) ) = (/) ) |
| 39 |
37 38
|
syl |
|- ( B e. X -> ( ( (/) ^o B ) .o (/) ) = (/) ) |
| 40 |
21 39
|
sylan9eqr |
|- ( ( B e. X /\ A = (/) ) -> ( ( A ^o B ) .o A ) = (/) ) |
| 41 |
18 40
|
eqtr4d |
|- ( ( B e. X /\ A = (/) ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |
| 42 |
2
|
ad2antlr |
|- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 43 |
11 13
|
sylbi |
|- ( B e. X -> suc B e. On ) |
| 44 |
|
oevn0 |
|- ( ( ( A e. On /\ suc B e. On ) /\ (/) e. A ) -> ( A ^o suc B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) ) |
| 45 |
43 44
|
sylanl2 |
|- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( A ^o suc B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) ) |
| 46 |
|
ovex |
|- ( A ^o B ) e. _V |
| 47 |
|
oveq1 |
|- ( x = ( A ^o B ) -> ( x .o A ) = ( ( A ^o B ) .o A ) ) |
| 48 |
|
eqid |
|- ( x e. _V |-> ( x .o A ) ) = ( x e. _V |-> ( x .o A ) ) |
| 49 |
|
ovex |
|- ( ( A ^o B ) .o A ) e. _V |
| 50 |
47 48 49
|
fvmpt |
|- ( ( A ^o B ) e. _V -> ( ( x e. _V |-> ( x .o A ) ) ` ( A ^o B ) ) = ( ( A ^o B ) .o A ) ) |
| 51 |
46 50
|
ax-mp |
|- ( ( x e. _V |-> ( x .o A ) ) ` ( A ^o B ) ) = ( ( A ^o B ) .o A ) |
| 52 |
|
oevn0 |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
| 53 |
23 52
|
sylanl2 |
|- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( ( x e. _V |-> ( x .o A ) ) ` ( A ^o B ) ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 55 |
51 54
|
eqtr3id |
|- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( ( A ^o B ) .o A ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 56 |
42 45 55
|
3eqtr4d |
|- ( ( ( A e. On /\ B e. X ) /\ (/) e. A ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |
| 57 |
41 56
|
oe0lem |
|- ( ( A e. On /\ B e. X ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |