| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑧 = ∅ → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o ∅ ) ) |
| 2 |
|
mpteq1 |
⊢ ( 𝑧 = ∅ → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 3 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝐴 +o 𝑥 ) ) = ∅ |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ∅ ) |
| 5 |
4
|
rneqd |
⊢ ( 𝑧 = ∅ → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ∅ ) |
| 6 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ∅ ) |
| 8 |
7
|
uneq2d |
⊢ ( 𝑧 = ∅ → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ∅ ) ) |
| 9 |
1 8
|
eqeq12d |
⊢ ( 𝑧 = ∅ → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o ∅ ) = ( 𝐴 ∪ ∅ ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ) |
| 11 |
|
mpteq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 12 |
11
|
rneqd |
⊢ ( 𝑧 = 𝑤 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 13 |
12
|
uneq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 14 |
10 13
|
eqeq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑧 = suc 𝑤 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o suc 𝑤 ) ) |
| 16 |
|
mpteq1 |
⊢ ( 𝑧 = suc 𝑤 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 17 |
16
|
rneqd |
⊢ ( 𝑧 = suc 𝑤 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 18 |
17
|
uneq2d |
⊢ ( 𝑧 = suc 𝑤 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 19 |
15 18
|
eqeq12d |
⊢ ( 𝑧 = suc 𝑤 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝐵 ) ) |
| 21 |
|
mpteq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 22 |
21
|
rneqd |
⊢ ( 𝑧 = 𝐵 → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 23 |
22
|
uneq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 24 |
20 23
|
eqeq12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 25 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 26 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
| 27 |
25 26
|
eqtr4di |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 ∪ ∅ ) ) |
| 28 |
|
uneq1 |
⊢ ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 29 |
|
unass |
⊢ ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 30 |
|
rexun |
⊢ ( ∃ 𝑥 ∈ ( 𝑤 ∪ { 𝑤 } ) 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 31 |
|
df-suc |
⊢ suc 𝑤 = ( 𝑤 ∪ { 𝑤 } ) |
| 32 |
31
|
rexeqi |
⊢ ( ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝑤 ∪ { 𝑤 } ) 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) |
| 34 |
33
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 35 |
34
|
elv |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 36 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) |
| 37 |
|
vex |
⊢ 𝑤 ∈ V |
| 38 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑤 ) ) |
| 39 |
38
|
eqeq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 = ( 𝐴 +o 𝑥 ) ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) ) |
| 40 |
37 39
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ↔ 𝑦 = ( 𝐴 +o 𝑤 ) ) |
| 41 |
36 40
|
bitr4i |
⊢ ( 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ↔ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 42 |
35 41
|
orbi12i |
⊢ ( ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ↔ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ∨ ∃ 𝑥 ∈ { 𝑤 } 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 43 |
30 32 42
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ) |
| 44 |
|
eqid |
⊢ ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) |
| 45 |
|
ovex |
⊢ ( 𝐴 +o 𝑥 ) ∈ V |
| 46 |
44 45
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ suc 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 47 |
|
elun |
⊢ ( 𝑦 ∈ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ↔ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∨ 𝑦 ∈ { ( 𝐴 +o 𝑤 ) } ) ) |
| 48 |
43 46 47
|
3bitr4i |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ 𝑦 ∈ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 49 |
48
|
eqriv |
⊢ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) |
| 50 |
49
|
uneq2i |
⊢ ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ( ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 51 |
29 50
|
eqtr4i |
⊢ ( ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 52 |
28 51
|
eqtrdi |
⊢ ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 53 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( 𝐴 +o suc 𝑤 ) = suc ( 𝐴 +o 𝑤 ) ) |
| 54 |
|
df-suc |
⊢ suc ( 𝐴 +o 𝑤 ) = ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( 𝐴 +o suc 𝑤 ) = ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) ) |
| 56 |
55
|
eqeq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ↔ ( ( 𝐴 +o 𝑤 ) ∪ { ( 𝐴 +o 𝑤 ) } ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 57 |
52 56
|
imbitrrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ On ) → ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 58 |
57
|
expcom |
⊢ ( 𝑤 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o suc 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ suc 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) ) |
| 59 |
|
vex |
⊢ 𝑧 ∈ V |
| 60 |
|
oalim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑧 ∈ V ∧ Lim 𝑧 ) ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 61 |
59 60
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑧 ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 62 |
61
|
ancoms |
⊢ ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ( 𝐴 +o 𝑧 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) ) |
| 64 |
|
iuneq2 |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 66 |
|
iunun |
⊢ ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( ∪ 𝑤 ∈ 𝑧 𝐴 ∪ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 67 |
|
0ellim |
⊢ ( Lim 𝑧 → ∅ ∈ 𝑧 ) |
| 68 |
|
ne0i |
⊢ ( ∅ ∈ 𝑧 → 𝑧 ≠ ∅ ) |
| 69 |
|
iunconst |
⊢ ( 𝑧 ≠ ∅ → ∪ 𝑤 ∈ 𝑧 𝐴 = 𝐴 ) |
| 70 |
67 68 69
|
3syl |
⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 𝐴 = 𝐴 ) |
| 71 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑤 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 72 |
35 71
|
bitri |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 73 |
72
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 74 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑧 ↔ ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ) |
| 75 |
74
|
anbi1i |
⊢ ( ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ( ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 76 |
|
r19.41v |
⊢ ( ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ( ∃ 𝑤 ∈ 𝑧 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 77 |
75 76
|
bitr4i |
⊢ ( ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 78 |
77
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 79 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑧 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 80 |
|
rexcom4 |
⊢ ( ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑤 ∈ 𝑧 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 81 |
78 79 80
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 82 |
73 81
|
bitr4i |
⊢ ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 83 |
|
limuni |
⊢ ( Lim 𝑧 → 𝑧 = ∪ 𝑧 ) |
| 84 |
83
|
rexeqdv |
⊢ ( Lim 𝑧 → ( ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 85 |
82 84
|
bitr4id |
⊢ ( Lim 𝑧 → ( ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 86 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑤 ∈ 𝑧 𝑦 ∈ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 87 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) |
| 88 |
87 45
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑧 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 89 |
85 86 88
|
3bitr4g |
⊢ ( Lim 𝑧 → ( 𝑦 ∈ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 90 |
89
|
eqrdv |
⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 91 |
70 90
|
uneq12d |
⊢ ( Lim 𝑧 → ( ∪ 𝑤 ∈ 𝑧 𝐴 ∪ ∪ 𝑤 ∈ 𝑧 ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 92 |
66 91
|
eqtrid |
⊢ ( Lim 𝑧 → ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 93 |
92
|
ad2antrr |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 94 |
63 65 93
|
3eqtrd |
⊢ ( ( ( Lim 𝑧 ∧ 𝐴 ∈ On ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 95 |
94
|
exp31 |
⊢ ( Lim 𝑧 → ( 𝐴 ∈ On → ( ∀ 𝑤 ∈ 𝑧 ( 𝐴 +o 𝑤 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑤 ↦ ( 𝐴 +o 𝑥 ) ) ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) ) |
| 96 |
9 14 19 24 27 58 95
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) ) |
| 97 |
96
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |