| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = (/) -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o (/) ) ) |
| 2 |
|
oveq2 |
|- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
| 3 |
2
|
oveq2d |
|- ( x = (/) -> ( A +o ( B +o x ) ) = ( A +o ( B +o (/) ) ) ) |
| 4 |
1 3
|
eqeq12d |
|- ( x = (/) -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) ) |
| 5 |
|
oveq2 |
|- ( x = y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o y ) ) |
| 6 |
|
oveq2 |
|- ( x = y -> ( B +o x ) = ( B +o y ) ) |
| 7 |
6
|
oveq2d |
|- ( x = y -> ( A +o ( B +o x ) ) = ( A +o ( B +o y ) ) ) |
| 8 |
5 7
|
eqeq12d |
|- ( x = y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) ) |
| 9 |
|
oveq2 |
|- ( x = suc y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o suc y ) ) |
| 10 |
|
oveq2 |
|- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
| 11 |
10
|
oveq2d |
|- ( x = suc y -> ( A +o ( B +o x ) ) = ( A +o ( B +o suc y ) ) ) |
| 12 |
9 11
|
eqeq12d |
|- ( x = suc y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 13 |
|
oveq2 |
|- ( x = C -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o C ) ) |
| 14 |
|
oveq2 |
|- ( x = C -> ( B +o x ) = ( B +o C ) ) |
| 15 |
14
|
oveq2d |
|- ( x = C -> ( A +o ( B +o x ) ) = ( A +o ( B +o C ) ) ) |
| 16 |
13 15
|
eqeq12d |
|- ( x = C -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 17 |
|
oacl |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
| 18 |
|
oa0 |
|- ( ( A +o B ) e. On -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
| 19 |
17 18
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
| 20 |
|
oa0 |
|- ( B e. On -> ( B +o (/) ) = B ) |
| 21 |
20
|
oveq2d |
|- ( B e. On -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 22 |
21
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 23 |
19 22
|
eqtr4d |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) |
| 24 |
|
suceq |
|- ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) |
| 25 |
|
oasuc |
|- ( ( ( A +o B ) e. On /\ y e. On ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
| 26 |
17 25
|
sylan |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
| 27 |
|
oasuc |
|- ( ( B e. On /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 28 |
27
|
oveq2d |
|- ( ( B e. On /\ y e. On ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 29 |
28
|
adantl |
|- ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 30 |
|
oacl |
|- ( ( B e. On /\ y e. On ) -> ( B +o y ) e. On ) |
| 31 |
|
oasuc |
|- ( ( A e. On /\ ( B +o y ) e. On ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
| 32 |
30 31
|
sylan2 |
|- ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
| 33 |
29 32
|
eqtrd |
|- ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 34 |
33
|
anassrs |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 35 |
26 34
|
eqeq12d |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) <-> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) ) |
| 36 |
24 35
|
imbitrrid |
|- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 37 |
36
|
expcom |
|- ( y e. On -> ( ( A e. On /\ B e. On ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) ) |
| 38 |
|
iuneq2 |
|- ( A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> U_ y e. x ( ( A +o B ) +o y ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 39 |
38
|
adantl |
|- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> U_ y e. x ( ( A +o B ) +o y ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 40 |
|
vex |
|- x e. _V |
| 41 |
|
oalim |
|- ( ( ( A +o B ) e. On /\ ( x e. _V /\ Lim x ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 42 |
40 41
|
mpanr1 |
|- ( ( ( A +o B ) e. On /\ Lim x ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 43 |
17 42
|
sylan |
|- ( ( ( A e. On /\ B e. On ) /\ Lim x ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 44 |
43
|
ancoms |
|- ( ( Lim x /\ ( A e. On /\ B e. On ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 45 |
44
|
adantr |
|- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) |
| 46 |
|
oalimcl |
|- ( ( B e. On /\ ( x e. _V /\ Lim x ) ) -> Lim ( B +o x ) ) |
| 47 |
40 46
|
mpanr1 |
|- ( ( B e. On /\ Lim x ) -> Lim ( B +o x ) ) |
| 48 |
47
|
ancoms |
|- ( ( Lim x /\ B e. On ) -> Lim ( B +o x ) ) |
| 49 |
|
ovex |
|- ( B +o x ) e. _V |
| 50 |
|
oalim |
|- ( ( A e. On /\ ( ( B +o x ) e. _V /\ Lim ( B +o x ) ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) |
| 51 |
49 50
|
mpanr1 |
|- ( ( A e. On /\ Lim ( B +o x ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) |
| 52 |
48 51
|
sylan2 |
|- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) |
| 53 |
|
limelon |
|- ( ( x e. _V /\ Lim x ) -> x e. On ) |
| 54 |
40 53
|
mpan |
|- ( Lim x -> x e. On ) |
| 55 |
|
oacl |
|- ( ( B e. On /\ x e. On ) -> ( B +o x ) e. On ) |
| 56 |
55
|
ancoms |
|- ( ( x e. On /\ B e. On ) -> ( B +o x ) e. On ) |
| 57 |
|
onelon |
|- ( ( ( B +o x ) e. On /\ z e. ( B +o x ) ) -> z e. On ) |
| 58 |
57
|
ex |
|- ( ( B +o x ) e. On -> ( z e. ( B +o x ) -> z e. On ) ) |
| 59 |
56 58
|
syl |
|- ( ( x e. On /\ B e. On ) -> ( z e. ( B +o x ) -> z e. On ) ) |
| 60 |
59
|
adantld |
|- ( ( x e. On /\ B e. On ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> z e. On ) ) |
| 61 |
60
|
adantl |
|- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> z e. On ) ) |
| 62 |
|
0ellim |
|- ( Lim x -> (/) e. x ) |
| 63 |
|
onelss |
|- ( B e. On -> ( z e. B -> z C_ B ) ) |
| 64 |
20
|
sseq2d |
|- ( B e. On -> ( z C_ ( B +o (/) ) <-> z C_ B ) ) |
| 65 |
63 64
|
sylibrd |
|- ( B e. On -> ( z e. B -> z C_ ( B +o (/) ) ) ) |
| 66 |
65
|
imp |
|- ( ( B e. On /\ z e. B ) -> z C_ ( B +o (/) ) ) |
| 67 |
|
oveq2 |
|- ( y = (/) -> ( B +o y ) = ( B +o (/) ) ) |
| 68 |
67
|
sseq2d |
|- ( y = (/) -> ( z C_ ( B +o y ) <-> z C_ ( B +o (/) ) ) ) |
| 69 |
68
|
rspcev |
|- ( ( (/) e. x /\ z C_ ( B +o (/) ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 70 |
62 66 69
|
syl2an |
|- ( ( Lim x /\ ( B e. On /\ z e. B ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 71 |
70
|
expr |
|- ( ( Lim x /\ B e. On ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) |
| 72 |
71
|
adantrl |
|- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) |
| 73 |
72
|
adantrr |
|- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) |
| 74 |
|
oawordex |
|- ( ( B e. On /\ z e. On ) -> ( B C_ z <-> E. y e. On ( B +o y ) = z ) ) |
| 75 |
74
|
ad2ant2l |
|- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( B C_ z <-> E. y e. On ( B +o y ) = z ) ) |
| 76 |
|
oaord |
|- ( ( y e. On /\ x e. On /\ B e. On ) -> ( y e. x <-> ( B +o y ) e. ( B +o x ) ) ) |
| 77 |
76
|
3expb |
|- ( ( y e. On /\ ( x e. On /\ B e. On ) ) -> ( y e. x <-> ( B +o y ) e. ( B +o x ) ) ) |
| 78 |
|
eleq1 |
|- ( ( B +o y ) = z -> ( ( B +o y ) e. ( B +o x ) <-> z e. ( B +o x ) ) ) |
| 79 |
77 78
|
sylan9bb |
|- ( ( ( y e. On /\ ( x e. On /\ B e. On ) ) /\ ( B +o y ) = z ) -> ( y e. x <-> z e. ( B +o x ) ) ) |
| 80 |
79
|
an32s |
|- ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) -> ( y e. x <-> z e. ( B +o x ) ) ) |
| 81 |
80
|
biimpar |
|- ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> y e. x ) |
| 82 |
|
eqimss2 |
|- ( ( B +o y ) = z -> z C_ ( B +o y ) ) |
| 83 |
82
|
ad3antlr |
|- ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> z C_ ( B +o y ) ) |
| 84 |
81 83
|
jca |
|- ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> ( y e. x /\ z C_ ( B +o y ) ) ) |
| 85 |
84
|
anasss |
|- ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) ) -> ( y e. x /\ z C_ ( B +o y ) ) ) |
| 86 |
85
|
expcom |
|- ( ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) -> ( ( y e. On /\ ( B +o y ) = z ) -> ( y e. x /\ z C_ ( B +o y ) ) ) ) |
| 87 |
86
|
reximdv2 |
|- ( ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) -> ( E. y e. On ( B +o y ) = z -> E. y e. x z C_ ( B +o y ) ) ) |
| 88 |
87
|
adantrr |
|- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( E. y e. On ( B +o y ) = z -> E. y e. x z C_ ( B +o y ) ) ) |
| 89 |
75 88
|
sylbid |
|- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( B C_ z -> E. y e. x z C_ ( B +o y ) ) ) |
| 90 |
89
|
adantl |
|- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( B C_ z -> E. y e. x z C_ ( B +o y ) ) ) |
| 91 |
|
eloni |
|- ( z e. On -> Ord z ) |
| 92 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 93 |
|
ordtri2or |
|- ( ( Ord z /\ Ord B ) -> ( z e. B \/ B C_ z ) ) |
| 94 |
91 92 93
|
syl2anr |
|- ( ( B e. On /\ z e. On ) -> ( z e. B \/ B C_ z ) ) |
| 95 |
94
|
ad2ant2l |
|- ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( z e. B \/ B C_ z ) ) |
| 96 |
95
|
adantl |
|- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( z e. B \/ B C_ z ) ) |
| 97 |
73 90 96
|
mpjaod |
|- ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 98 |
97
|
exp45 |
|- ( Lim x -> ( ( x e. On /\ B e. On ) -> ( z e. ( B +o x ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) ) |
| 99 |
98
|
imp |
|- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( z e. ( B +o x ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) |
| 100 |
99
|
adantld |
|- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) |
| 101 |
100
|
imp32 |
|- ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> E. y e. x z C_ ( B +o y ) ) |
| 102 |
|
simplrr |
|- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> z e. On ) |
| 103 |
|
onelon |
|- ( ( x e. On /\ y e. x ) -> y e. On ) |
| 104 |
103 30
|
sylan2 |
|- ( ( B e. On /\ ( x e. On /\ y e. x ) ) -> ( B +o y ) e. On ) |
| 105 |
104
|
exp32 |
|- ( B e. On -> ( x e. On -> ( y e. x -> ( B +o y ) e. On ) ) ) |
| 106 |
105
|
com12 |
|- ( x e. On -> ( B e. On -> ( y e. x -> ( B +o y ) e. On ) ) ) |
| 107 |
106
|
imp31 |
|- ( ( ( x e. On /\ B e. On ) /\ y e. x ) -> ( B +o y ) e. On ) |
| 108 |
107
|
ad4ant24 |
|- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> ( B +o y ) e. On ) |
| 109 |
|
simpll |
|- ( ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) -> A e. On ) |
| 110 |
109
|
ad2antlr |
|- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> A e. On ) |
| 111 |
|
oaword |
|- ( ( z e. On /\ ( B +o y ) e. On /\ A e. On ) -> ( z C_ ( B +o y ) <-> ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 112 |
102 108 110 111
|
syl3anc |
|- ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> ( z C_ ( B +o y ) <-> ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 113 |
112
|
rexbidva |
|- ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> ( E. y e. x z C_ ( B +o y ) <-> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 114 |
101 113
|
mpbid |
|- ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) |
| 115 |
114
|
exp32 |
|- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> ( z e. On -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) |
| 116 |
61 115
|
mpdd |
|- ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 117 |
116
|
exp32 |
|- ( Lim x -> ( x e. On -> ( B e. On -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) ) |
| 118 |
54 117
|
mpd |
|- ( Lim x -> ( B e. On -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) |
| 119 |
118
|
exp4a |
|- ( Lim x -> ( B e. On -> ( A e. On -> ( z e. ( B +o x ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) ) |
| 120 |
119
|
imp31 |
|- ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> ( z e. ( B +o x ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) |
| 121 |
120
|
ralrimiv |
|- ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> A. z e. ( B +o x ) E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) |
| 122 |
|
iunss2 |
|- ( A. z e. ( B +o x ) E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) |
| 123 |
121 122
|
syl |
|- ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) |
| 124 |
123
|
ancoms |
|- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) |
| 125 |
|
oaordi |
|- ( ( x e. On /\ B e. On ) -> ( y e. x -> ( B +o y ) e. ( B +o x ) ) ) |
| 126 |
125
|
anim1d |
|- ( ( x e. On /\ B e. On ) -> ( ( y e. x /\ w e. ( A +o ( B +o y ) ) ) -> ( ( B +o y ) e. ( B +o x ) /\ w e. ( A +o ( B +o y ) ) ) ) ) |
| 127 |
|
oveq2 |
|- ( z = ( B +o y ) -> ( A +o z ) = ( A +o ( B +o y ) ) ) |
| 128 |
127
|
eleq2d |
|- ( z = ( B +o y ) -> ( w e. ( A +o z ) <-> w e. ( A +o ( B +o y ) ) ) ) |
| 129 |
128
|
rspcev |
|- ( ( ( B +o y ) e. ( B +o x ) /\ w e. ( A +o ( B +o y ) ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) |
| 130 |
126 129
|
syl6 |
|- ( ( x e. On /\ B e. On ) -> ( ( y e. x /\ w e. ( A +o ( B +o y ) ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) |
| 131 |
130
|
expd |
|- ( ( x e. On /\ B e. On ) -> ( y e. x -> ( w e. ( A +o ( B +o y ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) ) |
| 132 |
131
|
rexlimdv |
|- ( ( x e. On /\ B e. On ) -> ( E. y e. x w e. ( A +o ( B +o y ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) |
| 133 |
|
eliun |
|- ( w e. U_ y e. x ( A +o ( B +o y ) ) <-> E. y e. x w e. ( A +o ( B +o y ) ) ) |
| 134 |
|
eliun |
|- ( w e. U_ z e. ( B +o x ) ( A +o z ) <-> E. z e. ( B +o x ) w e. ( A +o z ) ) |
| 135 |
132 133 134
|
3imtr4g |
|- ( ( x e. On /\ B e. On ) -> ( w e. U_ y e. x ( A +o ( B +o y ) ) -> w e. U_ z e. ( B +o x ) ( A +o z ) ) ) |
| 136 |
135
|
ssrdv |
|- ( ( x e. On /\ B e. On ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) |
| 137 |
54 136
|
sylan |
|- ( ( Lim x /\ B e. On ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) |
| 138 |
137
|
adantl |
|- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) |
| 139 |
124 138
|
eqssd |
|- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ z e. ( B +o x ) ( A +o z ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 140 |
52 139
|
eqtrd |
|- ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 141 |
140
|
an12s |
|- ( ( Lim x /\ ( A e. On /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 142 |
141
|
adantr |
|- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) |
| 143 |
39 45 142
|
3eqtr4d |
|- ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) |
| 144 |
143
|
exp31 |
|- ( Lim x -> ( ( A e. On /\ B e. On ) -> ( A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) ) ) |
| 145 |
4 8 12 16 23 37 144
|
tfinds3 |
|- ( C e. On -> ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 146 |
145
|
com12 |
|- ( ( A e. On /\ B e. On ) -> ( C e. On -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 147 |
146
|
3impia |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |