Metamath Proof Explorer


Theorem om0r

Description: Ordinal multiplication with zero. Proposition 8.18(1) of TakeutiZaring p. 63. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion om0r AOn𝑜A=

Proof

Step Hyp Ref Expression
1 oveq2 x=𝑜x=𝑜
2 1 eqeq1d x=𝑜x=𝑜=
3 oveq2 x=y𝑜x=𝑜y
4 3 eqeq1d x=y𝑜x=𝑜y=
5 oveq2 x=sucy𝑜x=𝑜sucy
6 5 eqeq1d x=sucy𝑜x=𝑜sucy=
7 oveq2 x=A𝑜x=𝑜A
8 7 eqeq1d x=A𝑜x=𝑜A=
9 0elon On
10 om0 On𝑜=
11 9 10 ax-mp 𝑜=
12 oveq1 𝑜y=𝑜y+𝑜=+𝑜
13 omsuc OnyOn𝑜sucy=𝑜y+𝑜
14 9 13 mpan yOn𝑜sucy=𝑜y+𝑜
15 oa0 On+𝑜=
16 9 15 ax-mp +𝑜=
17 16 eqcomi =+𝑜
18 17 a1i yOn=+𝑜
19 14 18 eqeq12d yOn𝑜sucy=𝑜y+𝑜=+𝑜
20 12 19 imbitrrid yOn𝑜y=𝑜sucy=
21 iuneq2 yx𝑜y=yx𝑜y=yx
22 iun0 yx=
23 21 22 eqtrdi yx𝑜y=yx𝑜y=
24 vex xV
25 omlim OnxVLimx𝑜x=yx𝑜y
26 9 25 mpan xVLimx𝑜x=yx𝑜y
27 24 26 mpan Limx𝑜x=yx𝑜y
28 27 eqeq1d Limx𝑜x=yx𝑜y=
29 23 28 imbitrrid Limxyx𝑜y=𝑜x=
30 2 4 6 8 11 20 29 tfinds AOn𝑜A=