Description: Ordinal multiplication with zero. Proposition 8.18(1) of TakeutiZaring p. 63. (Contributed by NM, 3-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | om0r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eqeq1d | |
3 | oveq2 | |
|
4 | 3 | eqeq1d | |
5 | oveq2 | |
|
6 | 5 | eqeq1d | |
7 | oveq2 | |
|
8 | 7 | eqeq1d | |
9 | 0elon | |
|
10 | om0 | |
|
11 | 9 10 | ax-mp | |
12 | oveq1 | |
|
13 | omsuc | |
|
14 | 9 13 | mpan | |
15 | oa0 | |
|
16 | 9 15 | ax-mp | |
17 | 16 | eqcomi | |
18 | 17 | a1i | |
19 | 14 18 | eqeq12d | |
20 | 12 19 | imbitrrid | |
21 | iuneq2 | |
|
22 | iun0 | |
|
23 | 21 22 | eqtrdi | |
24 | vex | |
|
25 | omlim | |
|
26 | 9 25 | mpan | |
27 | 24 26 | mpan | |
28 | 27 | eqeq1d | |
29 | 23 28 | imbitrrid | |
30 | 2 4 6 8 11 20 29 | tfinds | |