| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Ord 𝐴 ) |
| 3 |
|
ne0i |
⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) |
| 4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 5 |
|
id |
⊢ ( 𝐴 = ∪ 𝐴 → 𝐴 = ∪ 𝐴 ) |
| 6 |
|
df-lim |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) |
| 7 |
6
|
biimpri |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) → Lim 𝐴 ) |
| 8 |
2 4 5 7
|
syl2an3an |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = ∪ 𝐴 ) → Lim 𝐴 ) |
| 9 |
8
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) |
| 10 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
| 11 |
10
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝐴 ) → 𝐵 ∈ On ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ On ) |
| 13 |
12
|
anim1i |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝐴 ) → ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) |
| 14 |
|
0ellim |
⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∅ ∈ 𝐵 ) |
| 16 |
15
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝐴 ) → ∅ ∈ 𝐵 ) |
| 17 |
|
omlimcl |
⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝐴 ∈ On ∧ Lim 𝐴 ) ) ∧ ∅ ∈ 𝐵 ) → Lim ( 𝐵 ·o 𝐴 ) ) |
| 18 |
11 13 16 17
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝐴 ) → Lim ( 𝐵 ·o 𝐴 ) ) |
| 19 |
18
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( Lim 𝐴 → Lim ( 𝐵 ·o 𝐴 ) ) ) |
| 20 |
9 19
|
syld |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 = ∪ 𝐴 → Lim ( 𝐵 ·o 𝐴 ) ) ) |
| 21 |
|
onuni |
⊢ ( 𝐴 ∈ On → ∪ 𝐴 ∈ On ) |
| 22 |
21 10
|
anim12ci |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐵 ∈ On ∧ ∪ 𝐴 ∈ On ) ) |
| 23 |
|
omcl |
⊢ ( ( 𝐵 ∈ On ∧ ∪ 𝐴 ∈ On ) → ( 𝐵 ·o ∪ 𝐴 ) ∈ On ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐵 ·o ∪ 𝐴 ) ∈ On ) |
| 25 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) |
| 26 |
24 25
|
jca |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ( 𝐵 ·o ∪ 𝐴 ) ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → ( ( 𝐵 ·o ∪ 𝐴 ) ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ) |
| 28 |
|
oalimcl |
⊢ ( ( ( 𝐵 ·o ∪ 𝐴 ) ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → Lim ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) |
| 30 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → 𝐴 = suc ∪ 𝐴 ) |
| 31 |
30
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → ( 𝐵 ·o 𝐴 ) = ( 𝐵 ·o suc ∪ 𝐴 ) ) |
| 32 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → ( 𝐵 ∈ On ∧ ∪ 𝐴 ∈ On ) ) |
| 33 |
|
omsuc |
⊢ ( ( 𝐵 ∈ On ∧ ∪ 𝐴 ∈ On ) → ( 𝐵 ·o suc ∪ 𝐴 ) = ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → ( 𝐵 ·o suc ∪ 𝐴 ) = ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) |
| 35 |
31 34
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → ( 𝐵 ·o 𝐴 ) = ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) |
| 36 |
|
limeq |
⊢ ( ( 𝐵 ·o 𝐴 ) = ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) → ( Lim ( 𝐵 ·o 𝐴 ) ↔ Lim ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → ( Lim ( 𝐵 ·o 𝐴 ) ↔ Lim ( ( 𝐵 ·o ∪ 𝐴 ) +o 𝐵 ) ) ) |
| 38 |
29 37
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐴 = suc ∪ 𝐴 ) → Lim ( 𝐵 ·o 𝐴 ) ) |
| 39 |
38
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 = suc ∪ 𝐴 → Lim ( 𝐵 ·o 𝐴 ) ) ) |
| 40 |
|
orduniorsuc |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |
| 41 |
2 40
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |
| 42 |
20 39 41
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐵 ·o 𝐴 ) ) |