Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|
2 |
|
noel |
|
3 |
2
|
pm2.21i |
|
4 |
1 3
|
biimtrdi |
|
5 |
4
|
com12 |
|
6 |
5
|
adantr |
|
7 |
|
simpl |
|
8 |
|
simpl |
|
9 |
|
simpr |
|
10 |
|
omelon |
|
11 |
9 10
|
jctil |
|
12 |
|
oecl |
|
13 |
11 12
|
syl |
|
14 |
8 13
|
eqeltrd |
|
15 |
14
|
adantl |
|
16 |
|
onelon |
|
17 |
16
|
expcom |
|
18 |
17
|
adantr |
|
19 |
18
|
adantr |
|
20 |
15 19
|
jcai |
|
21 |
|
simpr |
|
22 |
21
|
adantr |
|
23 |
|
oaordi |
|
24 |
20 22 23
|
sylc |
|
25 |
|
oveq1 |
|
26 |
25
|
eliuni |
|
27 |
7 24 26
|
syl2an2r |
|
28 |
|
simpr |
|
29 |
8
|
adantr |
|
30 |
28 29
|
eleqtrd |
|
31 |
14
|
adantr |
|
32 |
8
|
eqcomd |
|
33 |
|
ssid |
|
34 |
32 33
|
eqsstrdi |
|
35 |
34
|
adantr |
|
36 |
|
oaabs2 |
|
37 |
30 31 35 36
|
syl21anc |
|
38 |
37 33
|
eqsstrdi |
|
39 |
38
|
iunssd |
|
40 |
|
peano1 |
|
41 |
|
oen0 |
|
42 |
11 40 41
|
sylancl |
|
43 |
42 32
|
eleqtrd |
|
44 |
|
simpr |
|
45 |
44
|
oveq1d |
|
46 |
|
oa0r |
|
47 |
14 46
|
syl |
|
48 |
47
|
adantr |
|
49 |
45 48
|
eqtrd |
|
50 |
49
|
sseq2d |
|
51 |
|
ssidd |
|
52 |
43 50 51
|
rspcedvd |
|
53 |
|
ssiun |
|
54 |
52 53
|
syl |
|
55 |
39 54
|
eqssd |
|
56 |
55
|
adantl |
|
57 |
27 56
|
eleqtrd |
|
58 |
57
|
ex |
|
59 |
6 58
|
jaod |
|
60 |
59
|
imp |
|