| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
|
| 2 |
|
noel |
|
| 3 |
2
|
pm2.21i |
|
| 4 |
1 3
|
biimtrdi |
|
| 5 |
4
|
com12 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpl |
|
| 8 |
|
simpl |
|
| 9 |
|
simpr |
|
| 10 |
|
omelon |
|
| 11 |
9 10
|
jctil |
|
| 12 |
|
oecl |
|
| 13 |
11 12
|
syl |
|
| 14 |
8 13
|
eqeltrd |
|
| 15 |
14
|
adantl |
|
| 16 |
|
onelon |
|
| 17 |
16
|
expcom |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
adantr |
|
| 20 |
15 19
|
jcai |
|
| 21 |
|
simpr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
oaordi |
|
| 24 |
20 22 23
|
sylc |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
eliuni |
|
| 27 |
7 24 26
|
syl2an2r |
|
| 28 |
|
simpr |
|
| 29 |
8
|
adantr |
|
| 30 |
28 29
|
eleqtrd |
|
| 31 |
14
|
adantr |
|
| 32 |
8
|
eqcomd |
|
| 33 |
|
ssid |
|
| 34 |
32 33
|
eqsstrdi |
|
| 35 |
34
|
adantr |
|
| 36 |
|
oaabs2 |
|
| 37 |
30 31 35 36
|
syl21anc |
|
| 38 |
37 33
|
eqsstrdi |
|
| 39 |
38
|
iunssd |
|
| 40 |
|
peano1 |
|
| 41 |
|
oen0 |
|
| 42 |
11 40 41
|
sylancl |
|
| 43 |
42 32
|
eleqtrd |
|
| 44 |
|
simpr |
|
| 45 |
44
|
oveq1d |
|
| 46 |
|
oa0r |
|
| 47 |
14 46
|
syl |
|
| 48 |
47
|
adantr |
|
| 49 |
45 48
|
eqtrd |
|
| 50 |
49
|
sseq2d |
|
| 51 |
|
ssidd |
|
| 52 |
43 50 51
|
rspcedvd |
|
| 53 |
|
ssiun |
|
| 54 |
52 53
|
syl |
|
| 55 |
39 54
|
eqssd |
|
| 56 |
55
|
adantl |
|
| 57 |
27 56
|
eleqtrd |
|
| 58 |
57
|
ex |
|
| 59 |
6 58
|
jaod |
|
| 60 |
59
|
imp |
|