Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
simp3 |
|
3 |
|
nnon |
|
4 |
|
om0r |
|
5 |
2 3 4
|
3syl |
|
6 |
1 5
|
sylan9eqr |
|
7 |
|
simpl2 |
|
8 |
|
omelon |
|
9 |
7 8
|
jctil |
|
10 |
|
peano1 |
|
11 |
|
oen0 |
|
12 |
9 10 11
|
sylancl |
|
13 |
6 12
|
eqeltrd |
|
14 |
13
|
a1d |
|
15 |
2
|
adantr |
|
16 |
|
simp1 |
|
17 |
16
|
anim1i |
|
18 |
|
ondif1 |
|
19 |
17 18
|
sylibr |
|
20 |
|
simpl2 |
|
21 |
|
oveq2 |
|
22 |
21
|
eleq1d |
|
23 |
22
|
imbi2d |
|
24 |
|
oveq2 |
|
25 |
24
|
eleq1d |
|
26 |
25
|
imbi2d |
|
27 |
|
oveq2 |
|
28 |
27
|
eleq1d |
|
29 |
28
|
imbi2d |
|
30 |
|
oveq2 |
|
31 |
30
|
eleq1d |
|
32 |
31
|
imbi2d |
|
33 |
|
eldifi |
|
34 |
|
om0 |
|
35 |
33 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
8
|
jctl |
|
38 |
37 10 11
|
sylancl |
|
39 |
38
|
adantl |
|
40 |
36 39
|
eqeltrd |
|
41 |
40
|
adantr |
|
42 |
33
|
adantr |
|
43 |
42
|
ad2antrl |
|
44 |
|
simpll |
|
45 |
|
onmsuc |
|
46 |
43 44 45
|
syl2an2r |
|
47 |
|
simpr |
|
48 |
|
simplrr |
|
49 |
|
eqid |
|
50 |
49
|
jctl |
|
51 |
50
|
olcd |
|
52 |
51
|
adantl |
|
53 |
52
|
ad2antrl |
|
54 |
53
|
adantr |
|
55 |
|
oacl2g |
|
56 |
47 48 54 55
|
syl21anc |
|
57 |
46 56
|
eqeltrd |
|
58 |
57
|
exp31 |
|
59 |
58
|
a2d |
|
60 |
23 26 29 32 41 59
|
finds |
|
61 |
60
|
expdimp |
|
62 |
15 19 20 61
|
syl12anc |
|
63 |
|
on0eqel |
|
64 |
16 63
|
syl |
|
65 |
14 62 64
|
mpjaodan |
|