| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
simp3 |
|
| 3 |
|
nnon |
|
| 4 |
|
om0r |
|
| 5 |
2 3 4
|
3syl |
|
| 6 |
1 5
|
sylan9eqr |
|
| 7 |
|
simpl2 |
|
| 8 |
|
omelon |
|
| 9 |
7 8
|
jctil |
|
| 10 |
|
peano1 |
|
| 11 |
|
oen0 |
|
| 12 |
9 10 11
|
sylancl |
|
| 13 |
6 12
|
eqeltrd |
|
| 14 |
13
|
a1d |
|
| 15 |
2
|
adantr |
|
| 16 |
|
simp1 |
|
| 17 |
16
|
anim1i |
|
| 18 |
|
ondif1 |
|
| 19 |
17 18
|
sylibr |
|
| 20 |
|
simpl2 |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
|
oveq2 |
|
| 28 |
27
|
eleq1d |
|
| 29 |
28
|
imbi2d |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
eleq1d |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
eldifi |
|
| 34 |
|
om0 |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
8
|
jctl |
|
| 38 |
37 10 11
|
sylancl |
|
| 39 |
38
|
adantl |
|
| 40 |
36 39
|
eqeltrd |
|
| 41 |
40
|
adantr |
|
| 42 |
33
|
adantr |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
|
simpll |
|
| 45 |
|
onmsuc |
|
| 46 |
43 44 45
|
syl2an2r |
|
| 47 |
|
simpr |
|
| 48 |
|
simplrr |
|
| 49 |
|
eqid |
|
| 50 |
49
|
jctl |
|
| 51 |
50
|
olcd |
|
| 52 |
51
|
adantl |
|
| 53 |
52
|
ad2antrl |
|
| 54 |
53
|
adantr |
|
| 55 |
|
oacl2g |
|
| 56 |
47 48 54 55
|
syl21anc |
|
| 57 |
46 56
|
eqeltrd |
|
| 58 |
57
|
exp31 |
|
| 59 |
58
|
a2d |
|
| 60 |
23 26 29 32 41 59
|
finds |
|
| 61 |
60
|
expdimp |
|
| 62 |
15 19 20 61
|
syl12anc |
|
| 63 |
|
on0eqel |
|
| 64 |
16 63
|
syl |
|
| 65 |
14 62 64
|
mpjaodan |
|