| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝑁 ) = ( ∅ ·o 𝑁 ) ) |
| 2 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) → 𝑁 ∈ ω ) |
| 3 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
| 4 |
|
om0r |
⊢ ( 𝑁 ∈ On → ( ∅ ·o 𝑁 ) = ∅ ) |
| 5 |
2 3 4
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) → ( ∅ ·o 𝑁 ) = ∅ ) |
| 6 |
1 5
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝑁 ) = ∅ ) |
| 7 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ 𝐴 = ∅ ) → 𝐵 ∈ On ) |
| 8 |
|
omelon |
⊢ ω ∈ On |
| 9 |
7 8
|
jctil |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ 𝐴 = ∅ ) → ( ω ∈ On ∧ 𝐵 ∈ On ) ) |
| 10 |
|
peano1 |
⊢ ∅ ∈ ω |
| 11 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐵 ) ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ 𝐴 = ∅ ) → ∅ ∈ ( ω ↑o 𝐵 ) ) |
| 13 |
6 12
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) |
| 14 |
13
|
a1d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ 𝐴 = ∅ ) → ( 𝐴 ∈ ( ω ↑o 𝐵 ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 15 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → 𝑁 ∈ ω ) |
| 16 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) → 𝐴 ∈ On ) |
| 17 |
16
|
anim1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
| 18 |
|
ondif1 |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ ( On ∖ 1o ) ) |
| 20 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → 𝐵 ∈ On ) |
| 21 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ↔ ( 𝐴 ·o ∅ ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ) ↔ ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o ∅ ) ∈ ( ω ↑o 𝐵 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
| 25 |
24
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ↔ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 26 |
25
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ) ↔ ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ↔ ( 𝐴 ·o suc 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ) ↔ ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o suc 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑁 ) ) |
| 31 |
30
|
eleq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ↔ ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( ω ↑o 𝐵 ) ) ↔ ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) ) |
| 33 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) → 𝐴 ∈ On ) |
| 34 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
| 35 |
33 34
|
syl |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) → ( 𝐴 ·o ∅ ) = ∅ ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ∅ ) = ∅ ) |
| 37 |
8
|
jctl |
⊢ ( 𝐵 ∈ On → ( ω ∈ On ∧ 𝐵 ∈ On ) ) |
| 38 |
37 10 11
|
sylancl |
⊢ ( 𝐵 ∈ On → ∅ ∈ ( ω ↑o 𝐵 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) → ∅ ∈ ( ω ↑o 𝐵 ) ) |
| 40 |
36 39
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ∅ ) ∈ ( ω ↑o 𝐵 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o ∅ ) ∈ ( ω ↑o 𝐵 ) ) |
| 42 |
33
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
| 43 |
42
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) → 𝐴 ∈ On ) |
| 44 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → 𝑦 ∈ ω ) |
| 45 |
|
onmsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 46 |
43 44 45
|
syl2an2r |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 47 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) |
| 48 |
|
simplrr |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → 𝐴 ∈ ( ω ↑o 𝐵 ) ) |
| 49 |
|
eqid |
⊢ ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) |
| 50 |
49
|
jctl |
⊢ ( 𝐵 ∈ On → ( ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) ∧ 𝐵 ∈ On ) ) |
| 51 |
50
|
olcd |
⊢ ( 𝐵 ∈ On → ( ( ω ↑o 𝐵 ) = ∅ ∨ ( ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) ∧ 𝐵 ∈ On ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) → ( ( ω ↑o 𝐵 ) = ∅ ∨ ( ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) ∧ 𝐵 ∈ On ) ) ) |
| 53 |
52
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) → ( ( ω ↑o 𝐵 ) = ∅ ∨ ( ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) ∧ 𝐵 ∈ On ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → ( ( ω ↑o 𝐵 ) = ∅ ∨ ( ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) ∧ 𝐵 ∈ On ) ) ) |
| 55 |
|
oacl2g |
⊢ ( ( ( ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ∧ ( ( ω ↑o 𝐵 ) = ∅ ∨ ( ( ω ↑o 𝐵 ) = ( ω ↑o 𝐵 ) ∧ 𝐵 ∈ On ) ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ( ω ↑o 𝐵 ) ) |
| 56 |
47 48 54 55
|
syl21anc |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ( ω ↑o 𝐵 ) ) |
| 57 |
46 56
|
eqeltrd |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o suc 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) |
| 58 |
57
|
exp31 |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) → ( 𝐴 ·o suc 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) ) ) |
| 59 |
58
|
a2d |
⊢ ( 𝑦 ∈ ω → ( ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) → ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o suc 𝑦 ) ∈ ( ω ↑o 𝐵 ) ) ) ) |
| 60 |
23 26 29 32 41 59
|
finds |
⊢ ( 𝑁 ∈ ω → ( ( ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ ( ω ↑o 𝐵 ) ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 61 |
60
|
expdimp |
⊢ ( ( 𝑁 ∈ ω ∧ ( 𝐴 ∈ ( On ∖ 1o ) ∧ 𝐵 ∈ On ) ) → ( 𝐴 ∈ ( ω ↑o 𝐵 ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 62 |
15 19 20 61
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ∈ ( ω ↑o 𝐵 ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) |
| 63 |
|
on0eqel |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
| 64 |
16 63
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
| 65 |
14 62 64
|
mpjaodan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω ) → ( 𝐴 ∈ ( ω ↑o 𝐵 ) → ( 𝐴 ·o 𝑁 ) ∈ ( ω ↑o 𝐵 ) ) ) |