Metamath Proof Explorer


Theorem omabs2

Description: Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or _om raised to some power of _om . (Contributed by RP, 12-Jan-2025)

Ref Expression
Assertion omabs2 ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ∅ ∨ 𝐵 = 2o ∨ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐵 = ∅ → ( 𝐴𝐵𝐴 ∈ ∅ ) )
2 noel ¬ 𝐴 ∈ ∅
3 2 pm2.21i ( 𝐴 ∈ ∅ → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
4 1 3 biimtrdi ( 𝐵 = ∅ → ( 𝐴𝐵 → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) )
5 4 impd ( 𝐵 = ∅ → ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
6 5 com12 ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
7 elpri ( 𝐴 ∈ { ∅ , 1o } → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) )
8 eleq2 ( 𝐴 = ∅ → ( ∅ ∈ 𝐴 ↔ ∅ ∈ ∅ ) )
9 noel ¬ ∅ ∈ ∅
10 9 pm2.21i ( ∅ ∈ ∅ → ( 𝐴 ·o 2o ) = 2o )
11 8 10 biimtrdi ( 𝐴 = ∅ → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) )
12 oveq1 ( 𝐴 = 1o → ( 𝐴 ·o 2o ) = ( 1o ·o 2o ) )
13 2on 2o ∈ On
14 om1r ( 2o ∈ On → ( 1o ·o 2o ) = 2o )
15 13 14 ax-mp ( 1o ·o 2o ) = 2o
16 12 15 eqtrdi ( 𝐴 = 1o → ( 𝐴 ·o 2o ) = 2o )
17 16 a1d ( 𝐴 = 1o → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) )
18 11 17 jaoi ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) )
19 7 18 syl ( 𝐴 ∈ { ∅ , 1o } → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) )
20 df2o3 2o = { ∅ , 1o }
21 19 20 eleq2s ( 𝐴 ∈ 2o → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) )
22 21 imp ( ( 𝐴 ∈ 2o ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 2o ) = 2o )
23 22 a1i ( 𝐵 = 2o → ( ( 𝐴 ∈ 2o ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 2o ) = 2o ) )
24 eleq2 ( 𝐵 = 2o → ( 𝐴𝐵𝐴 ∈ 2o ) )
25 24 anbi1d ( 𝐵 = 2o → ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ∈ 2o ∧ ∅ ∈ 𝐴 ) ) )
26 oveq2 ( 𝐵 = 2o → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 2o ) )
27 id ( 𝐵 = 2o𝐵 = 2o )
28 26 27 eqeq12d ( 𝐵 = 2o → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o 2o ) = 2o ) )
29 23 25 28 3imtr4d ( 𝐵 = 2o → ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
30 29 com12 ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = 2o → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
31 simpr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → 𝐴 ∈ ω )
32 simpllr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ∅ ∈ 𝐴 )
33 omelon ω ∈ On
34 oecl ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ↑o 𝐶 ) ∈ On )
35 33 34 mpan ( 𝐶 ∈ On → ( ω ↑o 𝐶 ) ∈ On )
36 35 adantl ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( ω ↑o 𝐶 ) ∈ On )
37 36 ad2antlr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( ω ↑o 𝐶 ) ∈ On )
38 33 jctl ( 𝐶 ∈ On → ( ω ∈ On ∧ 𝐶 ∈ On ) )
39 peano1 ∅ ∈ ω
40 oen0 ( ( ( ω ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐶 ) )
41 38 39 40 sylancl ( 𝐶 ∈ On → ∅ ∈ ( ω ↑o 𝐶 ) )
42 41 adantl ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ∅ ∈ ( ω ↑o 𝐶 ) )
43 42 ad2antlr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ∅ ∈ ( ω ↑o 𝐶 ) )
44 omabs ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ( ω ↑o 𝐶 ) ∈ On ∧ ∅ ∈ ( ω ↑o 𝐶 ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
45 31 32 37 43 44 syl22anc ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
46 oveq2 ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
47 id ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) )
48 46 47 eqeq12d ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
49 48 adantr ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
50 49 ad2antlr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
51 45 50 mpbird ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )
52 simpl ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) )
53 oecl ( ( ω ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On )
54 33 35 53 sylancr ( 𝐶 ∈ On → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On )
55 54 adantl ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On )
56 52 55 eqeltrd ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → 𝐵 ∈ On )
57 simpl ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → 𝐴𝐵 )
58 onelon ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → 𝐴 ∈ On )
59 56 57 58 syl2anr ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → 𝐴 ∈ On )
60 simplr ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ∅ ∈ 𝐴 )
61 ondif1 ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) )
62 59 60 61 sylanbrc ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → 𝐴 ∈ ( On ∖ 1o ) )
63 1onn 1o ∈ ω
64 ondif2 ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) )
65 33 63 64 mpbir2an ω ∈ ( On ∖ 2o )
66 62 65 jctil ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) )
67 66 adantr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) )
68 oeeu ( ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) → ∃! 𝑤𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) )
69 67 68 syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ∃! 𝑤𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) )
70 euex ( ∃! 𝑤𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ∃ 𝑤𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) )
71 simpr ( ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 )
72 0ss ∅ ⊆ 𝑧
73 0elon ∅ ∈ On
74 simpr ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On )
75 oecl ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On )
76 33 74 75 sylancr ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On )
77 76 ad2antrr ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → ( ω ↑o 𝑥 ) ∈ On )
78 onelon ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → 𝑧 ∈ On )
79 77 78 sylancom ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → 𝑧 ∈ On )
80 1on 1o ∈ On
81 omcl ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 1o ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On )
82 76 80 81 sylancl ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On )
83 82 ad5ant12 ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On )
84 oaword ( ( ∅ ∈ On ∧ 𝑧 ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) → ( ∅ ⊆ 𝑧 ↔ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) )
85 84 biimpd ( ( ∅ ∈ On ∧ 𝑧 ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) → ( ∅ ⊆ 𝑧 → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) )
86 73 79 83 85 mp3an2ani ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ∅ ⊆ 𝑧 → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) )
87 72 86 mpi ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) )
88 simpllr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑦 ∈ ( ω ∖ 1o ) )
89 omsson ω ⊆ On
90 ssdif ( ω ⊆ On → ( ω ∖ 1o ) ⊆ ( On ∖ 1o ) )
91 89 90 ax-mp ( ω ∖ 1o ) ⊆ ( On ∖ 1o )
92 91 sseli ( 𝑦 ∈ ( ω ∖ 1o ) → 𝑦 ∈ ( On ∖ 1o ) )
93 ondif1 ( 𝑦 ∈ ( On ∖ 1o ) ↔ ( 𝑦 ∈ On ∧ ∅ ∈ 𝑦 ) )
94 df-1o 1o = suc ∅
95 eloni ( 𝑦 ∈ On → Ord 𝑦 )
96 ordsucss ( Ord 𝑦 → ( ∅ ∈ 𝑦 → suc ∅ ⊆ 𝑦 ) )
97 95 96 syl ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 → suc ∅ ⊆ 𝑦 ) )
98 97 imp ( ( 𝑦 ∈ On ∧ ∅ ∈ 𝑦 ) → suc ∅ ⊆ 𝑦 )
99 94 98 eqsstrid ( ( 𝑦 ∈ On ∧ ∅ ∈ 𝑦 ) → 1o𝑦 )
100 93 99 sylbi ( 𝑦 ∈ ( On ∖ 1o ) → 1o𝑦 )
101 88 92 100 3syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 1o𝑦 )
102 eldifi ( 𝑦 ∈ ( ω ∖ 1o ) → 𝑦 ∈ ω )
103 nnon ( 𝑦 ∈ ω → 𝑦 ∈ On )
104 102 103 syl ( 𝑦 ∈ ( ω ∖ 1o ) → 𝑦 ∈ On )
105 104 ad2antlr ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → 𝑦 ∈ On )
106 simp-4r ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑥 ∈ On )
107 33 106 75 sylancr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝑥 ) ∈ On )
108 omwordi ( ( 1o ∈ On ∧ 𝑦 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( 1o𝑦 → ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) )
109 80 105 107 108 mp3an2ani ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 1o𝑦 → ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) )
110 101 109 mpd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) )
111 105 adantr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑦 ∈ On )
112 omcl ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On )
113 107 111 112 syl2anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On )
114 79 adantr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑧 ∈ On )
115 oawordri ( ( ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ∧ 𝑧 ∈ On ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) )
116 83 113 114 115 syl3anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) )
117 110 116 mpd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) )
118 87 117 sstrd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) )
119 33 75 mpan ( 𝑥 ∈ On → ( ω ↑o 𝑥 ) ∈ On )
120 119 80 81 sylancl ( 𝑥 ∈ On → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On )
121 oa0 ( ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ( ω ↑o 𝑥 ) ·o 1o ) )
122 120 121 syl ( 𝑥 ∈ On → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ( ω ↑o 𝑥 ) ·o 1o ) )
123 om1 ( ( ω ↑o 𝑥 ) ∈ On → ( ( ω ↑o 𝑥 ) ·o 1o ) = ( ω ↑o 𝑥 ) )
124 119 123 syl ( 𝑥 ∈ On → ( ( ω ↑o 𝑥 ) ·o 1o ) = ( ω ↑o 𝑥 ) )
125 122 124 eqtrd ( 𝑥 ∈ On → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ω ↑o 𝑥 ) )
126 106 125 syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ω ↑o 𝑥 ) )
127 simpr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 )
128 118 126 127 3sstr3d ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝑥 ) ⊆ 𝐴 )
129 simp-7l ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴𝐵 )
130 simplrl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) )
131 130 ad4antr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) )
132 129 131 eleqtrd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) )
133 55 ad6antlr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On )
134 ontr2 ( ( ( ω ↑o 𝑥 ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( ( ( ω ↑o 𝑥 ) ⊆ 𝐴𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) → ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
135 107 133 134 syl2anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ⊆ 𝐴𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) → ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
136 128 132 135 mp2and ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) )
137 36 ad6antlr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝐶 ) ∈ On )
138 65 a1i ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ∈ ( On ∖ 2o ) )
139 oeord ( ( 𝑥 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 𝑥 ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
140 106 137 138 139 syl3anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
141 136 140 mpbird ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑥 ∈ ( ω ↑o 𝐶 ) )
142 simp-5r ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ⊆ 𝐴 )
143 142 128 unssd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 )
144 simplr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑧 ∈ ( ω ↑o 𝑥 ) )
145 onelpss ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) )
146 145 biimpd ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) )
147 79 107 146 syl2an2r ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) )
148 144 147 mpd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) )
149 simpl ( ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) → 𝑧 ⊆ ( ω ↑o 𝑥 ) )
150 148 149 syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑧 ⊆ ( ω ↑o 𝑥 ) )
151 oaword ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ↔ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) )
152 151 biimpd ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) )
153 114 107 113 152 syl3anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) )
154 150 153 mpd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) )
155 omsuc ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) )
156 107 111 155 syl2anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) )
157 154 156 sseqtrrd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) )
158 ordom Ord ω
159 88 102 syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑦 ∈ ω )
160 ordsucss ( Ord ω → ( 𝑦 ∈ ω → suc 𝑦 ⊆ ω ) )
161 158 159 160 mpsyl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → suc 𝑦 ⊆ ω )
162 oe1 ( ω ∈ On → ( ω ↑o 1o ) = ω )
163 33 162 ax-mp ( ω ↑o 1o ) = ω
164 simpr ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ )
165 164 oveq2d ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) )
166 oe0 ( ω ∈ On → ( ω ↑o ∅ ) = 1o )
167 33 166 ax-mp ( ω ↑o ∅ ) = 1o
168 165 167 eqtrdi ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ω ↑o 𝑥 ) = 1o )
169 168 oveq1d ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) = ( 1o ·o 𝑦 ) )
170 104 adantl ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) → 𝑦 ∈ On )
171 170 ad5ant12 ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑦 ∈ On )
172 om1r ( 𝑦 ∈ On → ( 1o ·o 𝑦 ) = 𝑦 )
173 171 172 syl ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( 1o ·o 𝑦 ) = 𝑦 )
174 169 173 eqtrd ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) = 𝑦 )
175 simpllr ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑧 ∈ ( ω ↑o 𝑥 ) )
176 175 168 eleqtrd ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑧 ∈ 1o )
177 el1o ( 𝑧 ∈ 1o𝑧 = ∅ )
178 176 177 sylib ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑧 = ∅ )
179 174 178 oveq12d ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = ( 𝑦 +o ∅ ) )
180 simplr ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 )
181 oa0 ( 𝑦 ∈ On → ( 𝑦 +o ∅ ) = 𝑦 )
182 171 181 syl ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( 𝑦 +o ∅ ) = 𝑦 )
183 179 180 182 3eqtr3d ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝐴 = 𝑦 )
184 159 adantr ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑦 ∈ ω )
185 183 184 eqeltrd ( ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝐴 ∈ ω )
186 185 ex ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 = ∅ → 𝐴 ∈ ω ) )
187 33 33 pm3.2i ( ω ∈ On ∧ ω ∈ On )
188 ontr2 ( ( ω ∈ On ∧ ω ∈ On ) → ( ( ω ⊆ 𝐴𝐴 ∈ ω ) → ω ∈ ω ) )
189 188 expd ( ( ω ∈ On ∧ ω ∈ On ) → ( ω ⊆ 𝐴 → ( 𝐴 ∈ ω → ω ∈ ω ) ) )
190 187 142 189 mpsyl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ∈ ω → ω ∈ ω ) )
191 elirr ¬ ω ∈ ω
192 191 pm2.21i ( ω ∈ ω → 1o𝑥 )
193 192 a1i ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ∈ ω → 1o𝑥 ) )
194 186 190 193 3syld ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 = ∅ → 1o𝑥 ) )
195 eloni ( 𝑥 ∈ On → Ord 𝑥 )
196 ordsucss ( Ord 𝑥 → ( ∅ ∈ 𝑥 → suc ∅ ⊆ 𝑥 ) )
197 196 imp ( ( Ord 𝑥 ∧ ∅ ∈ 𝑥 ) → suc ∅ ⊆ 𝑥 )
198 94 197 eqsstrid ( ( Ord 𝑥 ∧ ∅ ∈ 𝑥 ) → 1o𝑥 )
199 198 ex ( Ord 𝑥 → ( ∅ ∈ 𝑥 → 1o𝑥 ) )
200 106 195 199 3syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ∅ ∈ 𝑥 → 1o𝑥 ) )
201 on0eqel ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) )
202 106 201 syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) )
203 194 200 202 mpjaod ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 1o𝑥 )
204 80 a1i ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 1o ∈ On )
205 33 a1i ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ∈ On )
206 204 106 205 3jca ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 1o ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ On ) )
207 oewordi ( ( ( 1o ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 1o𝑥 → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) )
208 206 39 207 sylancl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 1o𝑥 → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) )
209 203 208 mpd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) )
210 163 209 eqsstrrid ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ⊆ ( ω ↑o 𝑥 ) )
211 161 210 sstrd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → suc 𝑦 ⊆ ( ω ↑o 𝑥 ) )
212 onsuc ( 𝑦 ∈ On → suc 𝑦 ∈ On )
213 111 212 syl ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → suc 𝑦 ∈ On )
214 omwordi ( ( suc 𝑦 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( suc 𝑦 ⊆ ( ω ↑o 𝑥 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) )
215 213 107 107 214 syl3anc ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( suc 𝑦 ⊆ ( ω ↑o 𝑥 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) )
216 211 215 mpd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) )
217 157 216 sstrd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) )
218 127 eqcomd ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) )
219 oeoa ( ( ω ∈ On ∧ 𝑥 ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) )
220 33 106 106 219 mp3an2i ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) )
221 217 218 220 3sstr4d ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) )
222 simpr3 ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) )
223 59 adantr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ∈ On )
224 simprr ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → 𝐶 ∈ On )
225 simp1 ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → 𝑥 ∈ ( ω ↑o 𝐶 ) )
226 224 225 anim12i ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) )
227 onelon ( ( ( ω ↑o 𝐶 ) ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → 𝑥 ∈ On )
228 35 227 sylan ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → 𝑥 ∈ On )
229 pm4.24 ( 𝑥 ∈ On ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ On ) )
230 228 229 sylib ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( 𝑥 ∈ On ∧ 𝑥 ∈ On ) )
231 oacl ( ( 𝑥 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑥 +o 𝑥 ) ∈ On )
232 230 231 syl ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( 𝑥 +o 𝑥 ) ∈ On )
233 oecl ( ( ω ∈ On ∧ ( 𝑥 +o 𝑥 ) ∈ On ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On )
234 33 232 233 sylancr ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On )
235 226 234 syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On )
236 55 ad2antlr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On )
237 omwordri ( ( 𝐴 ∈ On ∧ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) )
238 223 235 236 237 syl3anc ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) )
239 222 238 mpd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
240 226 230 231 3syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 +o 𝑥 ) ∈ On )
241 36 ad2antlr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o 𝐶 ) ∈ On )
242 oeoa ( ( ω ∈ On ∧ ( 𝑥 +o 𝑥 ) ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
243 33 240 241 242 mp3an2i ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
244 226 228 syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝑥 ∈ On )
245 oaass ( ( 𝑥 ∈ On ∧ 𝑥 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) = ( 𝑥 +o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) )
246 244 244 241 245 syl3anc ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) = ( 𝑥 +o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) )
247 simpr1 ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝑥 ∈ ( ω ↑o 𝐶 ) )
248 ssidd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o 𝐶 ) ⊆ ( ω ↑o 𝐶 ) )
249 oaabs2 ( ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ↑o 𝐶 ) ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ ( ω ↑o 𝐶 ) ) → ( 𝑥 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) )
250 247 241 248 249 syl21anc ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) )
251 250 oveq2d ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 +o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( 𝑥 +o ( ω ↑o 𝐶 ) ) )
252 246 251 250 3eqtrd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) )
253 252 oveq2d ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
254 243 253 eqtr3d ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
255 239 254 sseqtrd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ω ↑o ( ω ↑o 𝐶 ) ) )
256 oveq2 ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) )
257 256 167 eqtrdi ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = 1o )
258 257 uneq2d ( 𝑥 = ∅ → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ∪ 1o ) )
259 33 oneluni ( 1o ∈ ω → ( ω ∪ 1o ) = ω )
260 63 259 ax-mp ( ω ∪ 1o ) = ω
261 260 163 eqtr4i ( ω ∪ 1o ) = ( ω ↑o 1o )
262 258 261 eqtrdi ( 𝑥 = ∅ → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 1o ) )
263 262 adantl ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 1o ) )
264 263 oveq1d ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
265 224 ad2antrr ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → 𝐶 ∈ On )
266 oecl ( ( ω ∈ On ∧ ∅ ∈ On ) → ( ω ↑o ∅ ) ∈ On )
267 33 73 266 mp2an ( ω ↑o ∅ ) ∈ On
268 oecl ( ( ω ∈ On ∧ ( ω ↑o ∅ ) ∈ On ) → ( ω ↑o ( ω ↑o ∅ ) ) ∈ On )
269 33 267 268 mp2an ( ω ↑o ( ω ↑o ∅ ) ) ∈ On
270 269 2a1i ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ) )
271 270 54 jca2 ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ( ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) ) )
272 167 oveq2i ( ω ↑o ( ω ↑o ∅ ) ) = ( ω ↑o 1o )
273 272 163 eqtri ( ω ↑o ( ω ↑o ∅ ) ) = ω
274 ssun1 ω ⊆ ( ω ∪ ( ω ↑o 𝑥 ) )
275 273 274 eqsstri ( ω ↑o ( ω ↑o ∅ ) ) ⊆ ( ω ∪ ( ω ↑o 𝑥 ) )
276 simp2 ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 )
277 275 276 sstrid ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 )
278 277 adantl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 )
279 57 ad2antrr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴𝐵 )
280 simplrl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) )
281 279 280 eleqtrd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) )
282 278 281 jca ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
283 282 adantr ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
284 ontr2 ( ( ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( ( ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) → ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
285 271 283 284 syl6ci ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
286 oeord ( ( ∅ ∈ On ∧ 𝐶 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( ∅ ∈ 𝐶 ↔ ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ) )
287 73 65 286 mp3an13 ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ) )
288 65 a1i ( 𝐶 ∈ On → ω ∈ ( On ∖ 2o ) )
289 oeord ( ( ( ω ↑o ∅ ) ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
290 267 35 288 289 mp3an2i ( 𝐶 ∈ On → ( ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
291 287 290 bitrd ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
292 291 biimprd ( 𝐶 ∈ On → ( ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) → ∅ ∈ 𝐶 ) )
293 285 292 sylcom ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ∅ ∈ 𝐶 ) )
294 eloni ( 𝐶 ∈ On → Ord 𝐶 )
295 ordsucss ( Ord 𝐶 → ( ∅ ∈ 𝐶 → suc ∅ ⊆ 𝐶 ) )
296 94 sseq1i ( 1o𝐶 ↔ suc ∅ ⊆ 𝐶 )
297 295 296 imbitrrdi ( Ord 𝐶 → ( ∅ ∈ 𝐶 → 1o𝐶 ) )
298 294 297 syl ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → 1o𝐶 ) )
299 293 298 sylcom ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → 1o𝐶 ) )
300 265 299 jcai ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On ∧ 1o𝐶 ) )
301 33 a1i ( 𝐶 ∈ On → ω ∈ On )
302 80 a1i ( 𝐶 ∈ On → 1o ∈ On )
303 301 302 35 3jca ( 𝐶 ∈ On → ( ω ∈ On ∧ 1o ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) )
304 303 adantr ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( ω ∈ On ∧ 1o ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) )
305 oeoa ( ( ω ∈ On ∧ 1o ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( 1o +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
306 304 305 syl ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( ω ↑o ( 1o +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
307 63 a1i ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → 1o ∈ ω )
308 35 adantr ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( ω ↑o 𝐶 ) ∈ On )
309 oeword ( ( 1o ∈ On ∧ 𝐶 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 1o𝐶 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝐶 ) ) )
310 80 65 309 mp3an13 ( 𝐶 ∈ On → ( 1o𝐶 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝐶 ) ) )
311 310 biimpa ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝐶 ) )
312 163 311 eqsstrrid ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ω ⊆ ( ω ↑o 𝐶 ) )
313 oaabs ( ( ( 1o ∈ ω ∧ ( ω ↑o 𝐶 ) ∈ On ) ∧ ω ⊆ ( ω ↑o 𝐶 ) ) → ( 1o +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) )
314 307 308 312 313 syl21anc ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( 1o +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) )
315 314 oveq2d ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( ω ↑o ( 1o +o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
316 306 315 eqtr3d ( ( 𝐶 ∈ On ∧ 1o𝐶 ) → ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
317 300 316 syl ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
318 264 317 eqtrd ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
319 244 195 196 3syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ∅ ∈ 𝑥 → suc ∅ ⊆ 𝑥 ) )
320 319 imp ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → suc ∅ ⊆ 𝑥 )
321 94 320 eqsstrid ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → 1o𝑥 )
322 247 adantr ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → 𝑥 ∈ ( ω ↑o 𝐶 ) )
323 241 322 227 syl2an2r ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → 𝑥 ∈ On )
324 65 a1i ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ω ∈ ( On ∖ 2o ) )
325 oeword ( ( 1o ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 1o𝑥 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) )
326 80 323 324 325 mp3an2i ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( 1o𝑥 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) )
327 321 326 mpbid ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) )
328 163 327 eqsstrrid ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ω ⊆ ( ω ↑o 𝑥 ) )
329 ssequn1 ( ω ⊆ ( ω ↑o 𝑥 ) ↔ ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) )
330 328 329 sylib ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) )
331 330 oveq1d ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
332 241 adantr ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o 𝐶 ) ∈ On )
333 oeoa ( ( ω ∈ On ∧ 𝑥 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
334 33 323 332 333 mp3an2i ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
335 ssidd ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o 𝐶 ) ⊆ ( ω ↑o 𝐶 ) )
336 322 332 335 249 syl21anc ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) )
337 336 oveq2d ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
338 331 334 337 3eqtr2d ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
339 226 228 201 3syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) )
340 318 338 339 mpjaodan ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
341 276 adantl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 )
342 33 228 75 sylancr ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( ω ↑o 𝑥 ) ∈ On )
343 342 33 jctil ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( ω ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) )
344 onun2 ( ( ω ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ∈ On )
345 226 343 344 3syl ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ∈ On )
346 omwordri ( ( ( ω ∪ ( ω ↑o 𝑥 ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) )
347 345 223 236 346 syl3anc ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) )
348 341 347 mpd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
349 340 348 eqsstrrd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
350 255 349 eqssd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) )
351 49 ad2antlr ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) )
352 350 351 mpbird ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )
353 352 ex ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
354 353 ad5antr ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
355 141 143 221 354 mp3and ( ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )
356 355 ex ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → ( ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
357 71 356 syl5 ( ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → ( ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
358 357 rexlimdva ( ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) → ( ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
359 358 rexlimdva ( ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → ( ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
360 359 rexlimdva ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
361 360 exlimdv ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ∃ 𝑤𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
362 70 361 syl5 ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ∃! 𝑤𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
363 69 362 mpd ( ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )
364 eloni ( 𝐴 ∈ On → Ord 𝐴 )
365 59 364 syl ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → Ord 𝐴 )
366 ordtri2or ( ( Ord 𝐴 ∧ Ord ω ) → ( 𝐴 ∈ ω ∨ ω ⊆ 𝐴 ) )
367 365 158 366 sylancl ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( 𝐴 ∈ ω ∨ ω ⊆ 𝐴 ) )
368 51 363 367 mpjaodan ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )
369 368 ex ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
370 6 30 369 3jaod ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 = ∅ ∨ 𝐵 = 2o ∨ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) )
371 370 imp ( ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ∅ ∨ 𝐵 = 2o ∨ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 )