Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ∅ ) ) |
2 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
3 |
2
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
4 |
1 3
|
biimtrdi |
⊢ ( 𝐵 = ∅ → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) ) |
5 |
4
|
impd |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
6 |
5
|
com12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
7 |
|
elpri |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) |
8 |
|
eleq2 |
⊢ ( 𝐴 = ∅ → ( ∅ ∈ 𝐴 ↔ ∅ ∈ ∅ ) ) |
9 |
|
noel |
⊢ ¬ ∅ ∈ ∅ |
10 |
9
|
pm2.21i |
⊢ ( ∅ ∈ ∅ → ( 𝐴 ·o 2o ) = 2o ) |
11 |
8 10
|
biimtrdi |
⊢ ( 𝐴 = ∅ → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) ) |
12 |
|
oveq1 |
⊢ ( 𝐴 = 1o → ( 𝐴 ·o 2o ) = ( 1o ·o 2o ) ) |
13 |
|
2on |
⊢ 2o ∈ On |
14 |
|
om1r |
⊢ ( 2o ∈ On → ( 1o ·o 2o ) = 2o ) |
15 |
13 14
|
ax-mp |
⊢ ( 1o ·o 2o ) = 2o |
16 |
12 15
|
eqtrdi |
⊢ ( 𝐴 = 1o → ( 𝐴 ·o 2o ) = 2o ) |
17 |
16
|
a1d |
⊢ ( 𝐴 = 1o → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) ) |
18 |
11 17
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) ) |
19 |
7 18
|
syl |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) ) |
20 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
21 |
19 20
|
eleq2s |
⊢ ( 𝐴 ∈ 2o → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 2o ) = 2o ) ) |
22 |
21
|
imp |
⊢ ( ( 𝐴 ∈ 2o ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 2o ) = 2o ) |
23 |
22
|
a1i |
⊢ ( 𝐵 = 2o → ( ( 𝐴 ∈ 2o ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 2o ) = 2o ) ) |
24 |
|
eleq2 |
⊢ ( 𝐵 = 2o → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 2o ) ) |
25 |
24
|
anbi1d |
⊢ ( 𝐵 = 2o → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ∈ 2o ∧ ∅ ∈ 𝐴 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝐵 = 2o → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 2o ) ) |
27 |
|
id |
⊢ ( 𝐵 = 2o → 𝐵 = 2o ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝐵 = 2o → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o 2o ) = 2o ) ) |
29 |
23 25 28
|
3imtr4d |
⊢ ( 𝐵 = 2o → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
30 |
29
|
com12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = 2o → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → 𝐴 ∈ ω ) |
32 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ∅ ∈ 𝐴 ) |
33 |
|
omelon |
⊢ ω ∈ On |
34 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ↑o 𝐶 ) ∈ On ) |
35 |
33 34
|
mpan |
⊢ ( 𝐶 ∈ On → ( ω ↑o 𝐶 ) ∈ On ) |
36 |
35
|
adantl |
⊢ ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( ω ↑o 𝐶 ) ∈ On ) |
37 |
36
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( ω ↑o 𝐶 ) ∈ On ) |
38 |
33
|
jctl |
⊢ ( 𝐶 ∈ On → ( ω ∈ On ∧ 𝐶 ∈ On ) ) |
39 |
|
peano1 |
⊢ ∅ ∈ ω |
40 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐶 ) ) |
41 |
38 39 40
|
sylancl |
⊢ ( 𝐶 ∈ On → ∅ ∈ ( ω ↑o 𝐶 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ∅ ∈ ( ω ↑o 𝐶 ) ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ∅ ∈ ( ω ↑o 𝐶 ) ) |
44 |
|
omabs |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ( ω ↑o 𝐶 ) ∈ On ∧ ∅ ∈ ( ω ↑o 𝐶 ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
45 |
31 32 37 43 44
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
46 |
|
oveq2 |
⊢ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
47 |
|
id |
⊢ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
48 |
46 47
|
eqeq12d |
⊢ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
50 |
49
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
51 |
45 50
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) |
52 |
|
simpl |
⊢ ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
53 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) |
54 |
33 35 53
|
sylancr |
⊢ ( 𝐶 ∈ On → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) |
55 |
54
|
adantl |
⊢ ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) |
56 |
52 55
|
eqeltrd |
⊢ ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → 𝐵 ∈ On ) |
57 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ 𝐵 ) |
58 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
59 |
56 57 58
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → 𝐴 ∈ On ) |
60 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ∅ ∈ 𝐴 ) |
61 |
|
ondif1 |
⊢ ( 𝐴 ∈ ( On ∖ 1o ) ↔ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
62 |
59 60 61
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → 𝐴 ∈ ( On ∖ 1o ) ) |
63 |
|
1onn |
⊢ 1o ∈ ω |
64 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
65 |
33 63 64
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
66 |
62 65
|
jctil |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) ) |
67 |
66
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) ) |
68 |
|
oeeu |
⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ ( On ∖ 1o ) ) → ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ) |
69 |
67 68
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ) |
70 |
|
euex |
⊢ ( ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ∃ 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ) |
71 |
|
simpr |
⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) |
72 |
|
0ss |
⊢ ∅ ⊆ 𝑧 |
73 |
|
0elon |
⊢ ∅ ∈ On |
74 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) |
75 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On ) |
76 |
33 74 75
|
sylancr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
78 |
|
onelon |
⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → 𝑧 ∈ On ) |
79 |
77 78
|
sylancom |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → 𝑧 ∈ On ) |
80 |
|
1on |
⊢ 1o ∈ On |
81 |
|
omcl |
⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 1o ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) |
82 |
76 80 81
|
sylancl |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) |
83 |
82
|
ad5ant12 |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) |
84 |
|
oaword |
⊢ ( ( ∅ ∈ On ∧ 𝑧 ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) → ( ∅ ⊆ 𝑧 ↔ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) ) |
85 |
84
|
biimpd |
⊢ ( ( ∅ ∈ On ∧ 𝑧 ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) → ( ∅ ⊆ 𝑧 → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) ) |
86 |
73 79 83 85
|
mp3an2ani |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ∅ ⊆ 𝑧 → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) ) |
87 |
72 86
|
mpi |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ) |
88 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑦 ∈ ( ω ∖ 1o ) ) |
89 |
|
omsson |
⊢ ω ⊆ On |
90 |
|
ssdif |
⊢ ( ω ⊆ On → ( ω ∖ 1o ) ⊆ ( On ∖ 1o ) ) |
91 |
89 90
|
ax-mp |
⊢ ( ω ∖ 1o ) ⊆ ( On ∖ 1o ) |
92 |
91
|
sseli |
⊢ ( 𝑦 ∈ ( ω ∖ 1o ) → 𝑦 ∈ ( On ∖ 1o ) ) |
93 |
|
ondif1 |
⊢ ( 𝑦 ∈ ( On ∖ 1o ) ↔ ( 𝑦 ∈ On ∧ ∅ ∈ 𝑦 ) ) |
94 |
|
df-1o |
⊢ 1o = suc ∅ |
95 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
96 |
|
ordsucss |
⊢ ( Ord 𝑦 → ( ∅ ∈ 𝑦 → suc ∅ ⊆ 𝑦 ) ) |
97 |
95 96
|
syl |
⊢ ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 → suc ∅ ⊆ 𝑦 ) ) |
98 |
97
|
imp |
⊢ ( ( 𝑦 ∈ On ∧ ∅ ∈ 𝑦 ) → suc ∅ ⊆ 𝑦 ) |
99 |
94 98
|
eqsstrid |
⊢ ( ( 𝑦 ∈ On ∧ ∅ ∈ 𝑦 ) → 1o ⊆ 𝑦 ) |
100 |
93 99
|
sylbi |
⊢ ( 𝑦 ∈ ( On ∖ 1o ) → 1o ⊆ 𝑦 ) |
101 |
88 92 100
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 1o ⊆ 𝑦 ) |
102 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ω ∖ 1o ) → 𝑦 ∈ ω ) |
103 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
104 |
102 103
|
syl |
⊢ ( 𝑦 ∈ ( ω ∖ 1o ) → 𝑦 ∈ On ) |
105 |
104
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → 𝑦 ∈ On ) |
106 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑥 ∈ On ) |
107 |
33 106 75
|
sylancr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝑥 ) ∈ On ) |
108 |
|
omwordi |
⊢ ( ( 1o ∈ On ∧ 𝑦 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( 1o ⊆ 𝑦 → ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) |
109 |
80 105 107 108
|
mp3an2ani |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 1o ⊆ 𝑦 → ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) |
110 |
101 109
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) |
111 |
105
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑦 ∈ On ) |
112 |
|
omcl |
⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) |
113 |
107 111 112
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) |
114 |
79
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑧 ∈ On ) |
115 |
|
oawordri |
⊢ ( ( ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ∧ 𝑧 ∈ On ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) ) |
116 |
83 113 114 115
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) ) |
117 |
110 116
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) |
118 |
87 117
|
sstrd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) |
119 |
33 75
|
mpan |
⊢ ( 𝑥 ∈ On → ( ω ↑o 𝑥 ) ∈ On ) |
120 |
119 80 81
|
sylancl |
⊢ ( 𝑥 ∈ On → ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On ) |
121 |
|
oa0 |
⊢ ( ( ( ω ↑o 𝑥 ) ·o 1o ) ∈ On → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ( ω ↑o 𝑥 ) ·o 1o ) ) |
122 |
120 121
|
syl |
⊢ ( 𝑥 ∈ On → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ( ω ↑o 𝑥 ) ·o 1o ) ) |
123 |
|
om1 |
⊢ ( ( ω ↑o 𝑥 ) ∈ On → ( ( ω ↑o 𝑥 ) ·o 1o ) = ( ω ↑o 𝑥 ) ) |
124 |
119 123
|
syl |
⊢ ( 𝑥 ∈ On → ( ( ω ↑o 𝑥 ) ·o 1o ) = ( ω ↑o 𝑥 ) ) |
125 |
122 124
|
eqtrd |
⊢ ( 𝑥 ∈ On → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ω ↑o 𝑥 ) ) |
126 |
106 125
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 1o ) +o ∅ ) = ( ω ↑o 𝑥 ) ) |
127 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) |
128 |
118 126 127
|
3sstr3d |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝑥 ) ⊆ 𝐴 ) |
129 |
|
simp-7l |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 ∈ 𝐵 ) |
130 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
131 |
130
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
132 |
129 131
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
133 |
55
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) |
134 |
|
ontr2 |
⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( ( ( ω ↑o 𝑥 ) ⊆ 𝐴 ∧ 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) → ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
135 |
107 133 134
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ⊆ 𝐴 ∧ 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) → ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
136 |
128 132 135
|
mp2and |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
137 |
36
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 𝐶 ) ∈ On ) |
138 |
65
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ∈ ( On ∖ 2o ) ) |
139 |
|
oeord |
⊢ ( ( 𝑥 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 𝑥 ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
140 |
106 137 138 139
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o 𝑥 ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
141 |
136 140
|
mpbird |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑥 ∈ ( ω ↑o 𝐶 ) ) |
142 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ⊆ 𝐴 ) |
143 |
142 128
|
unssd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ) |
144 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑧 ∈ ( ω ↑o 𝑥 ) ) |
145 |
|
onelpss |
⊢ ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) ) |
146 |
145
|
biimpd |
⊢ ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) ) |
147 |
79 107 146
|
syl2an2r |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) ) |
148 |
144 147
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) ) |
149 |
|
simpl |
⊢ ( ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ∧ 𝑧 ≠ ( ω ↑o 𝑥 ) ) → 𝑧 ⊆ ( ω ↑o 𝑥 ) ) |
150 |
148 149
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑧 ⊆ ( ω ↑o 𝑥 ) ) |
151 |
|
oaword |
⊢ ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) ↔ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) ) |
152 |
151
|
biimpd |
⊢ ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) ) |
153 |
114 107 113 152
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑧 ⊆ ( ω ↑o 𝑥 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) ) |
154 |
150 153
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) |
155 |
|
omsuc |
⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) |
156 |
107 111 155
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝑥 ) ) ) |
157 |
154 156
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ) |
158 |
|
ordom |
⊢ Ord ω |
159 |
88 102
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝑦 ∈ ω ) |
160 |
|
ordsucss |
⊢ ( Ord ω → ( 𝑦 ∈ ω → suc 𝑦 ⊆ ω ) ) |
161 |
158 159 160
|
mpsyl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → suc 𝑦 ⊆ ω ) |
162 |
|
oe1 |
⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) |
163 |
33 162
|
ax-mp |
⊢ ( ω ↑o 1o ) = ω |
164 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ ) |
165 |
164
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) ) |
166 |
|
oe0 |
⊢ ( ω ∈ On → ( ω ↑o ∅ ) = 1o ) |
167 |
33 166
|
ax-mp |
⊢ ( ω ↑o ∅ ) = 1o |
168 |
165 167
|
eqtrdi |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ω ↑o 𝑥 ) = 1o ) |
169 |
168
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) = ( 1o ·o 𝑦 ) ) |
170 |
104
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) → 𝑦 ∈ On ) |
171 |
170
|
ad5ant12 |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑦 ∈ On ) |
172 |
|
om1r |
⊢ ( 𝑦 ∈ On → ( 1o ·o 𝑦 ) = 𝑦 ) |
173 |
171 172
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( 1o ·o 𝑦 ) = 𝑦 ) |
174 |
169 173
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) = 𝑦 ) |
175 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑧 ∈ ( ω ↑o 𝑥 ) ) |
176 |
175 168
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑧 ∈ 1o ) |
177 |
|
el1o |
⊢ ( 𝑧 ∈ 1o ↔ 𝑧 = ∅ ) |
178 |
176 177
|
sylib |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑧 = ∅ ) |
179 |
174 178
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = ( 𝑦 +o ∅ ) ) |
180 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) |
181 |
|
oa0 |
⊢ ( 𝑦 ∈ On → ( 𝑦 +o ∅ ) = 𝑦 ) |
182 |
171 181
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → ( 𝑦 +o ∅ ) = 𝑦 ) |
183 |
179 180 182
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝐴 = 𝑦 ) |
184 |
159
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝑦 ∈ ω ) |
185 |
183 184
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) ∧ 𝑥 = ∅ ) → 𝐴 ∈ ω ) |
186 |
185
|
ex |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 = ∅ → 𝐴 ∈ ω ) ) |
187 |
33 33
|
pm3.2i |
⊢ ( ω ∈ On ∧ ω ∈ On ) |
188 |
|
ontr2 |
⊢ ( ( ω ∈ On ∧ ω ∈ On ) → ( ( ω ⊆ 𝐴 ∧ 𝐴 ∈ ω ) → ω ∈ ω ) ) |
189 |
188
|
expd |
⊢ ( ( ω ∈ On ∧ ω ∈ On ) → ( ω ⊆ 𝐴 → ( 𝐴 ∈ ω → ω ∈ ω ) ) ) |
190 |
187 142 189
|
mpsyl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ∈ ω → ω ∈ ω ) ) |
191 |
|
elirr |
⊢ ¬ ω ∈ ω |
192 |
191
|
pm2.21i |
⊢ ( ω ∈ ω → 1o ⊆ 𝑥 ) |
193 |
192
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ∈ ω → 1o ⊆ 𝑥 ) ) |
194 |
186 190 193
|
3syld |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 = ∅ → 1o ⊆ 𝑥 ) ) |
195 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
196 |
|
ordsucss |
⊢ ( Ord 𝑥 → ( ∅ ∈ 𝑥 → suc ∅ ⊆ 𝑥 ) ) |
197 |
196
|
imp |
⊢ ( ( Ord 𝑥 ∧ ∅ ∈ 𝑥 ) → suc ∅ ⊆ 𝑥 ) |
198 |
94 197
|
eqsstrid |
⊢ ( ( Ord 𝑥 ∧ ∅ ∈ 𝑥 ) → 1o ⊆ 𝑥 ) |
199 |
198
|
ex |
⊢ ( Ord 𝑥 → ( ∅ ∈ 𝑥 → 1o ⊆ 𝑥 ) ) |
200 |
106 195 199
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ∅ ∈ 𝑥 → 1o ⊆ 𝑥 ) ) |
201 |
|
on0eqel |
⊢ ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
202 |
106 201
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
203 |
194 200 202
|
mpjaod |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 1o ⊆ 𝑥 ) |
204 |
80
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 1o ∈ On ) |
205 |
33
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ∈ On ) |
206 |
204 106 205
|
3jca |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 1o ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ On ) ) |
207 |
|
oewordi |
⊢ ( ( ( 1o ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 1o ⊆ 𝑥 → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) ) |
208 |
206 39 207
|
sylancl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 1o ⊆ 𝑥 → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) ) |
209 |
203 208
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) |
210 |
163 209
|
eqsstrrid |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ω ⊆ ( ω ↑o 𝑥 ) ) |
211 |
161 210
|
sstrd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → suc 𝑦 ⊆ ( ω ↑o 𝑥 ) ) |
212 |
|
onsuc |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
213 |
111 212
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → suc 𝑦 ∈ On ) |
214 |
|
omwordi |
⊢ ( ( suc 𝑦 ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( suc 𝑦 ⊆ ( ω ↑o 𝑥 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) ) |
215 |
213 107 107 214
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( suc 𝑦 ⊆ ( ω ↑o 𝑥 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) ) |
216 |
211 215
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ω ↑o 𝑥 ) ·o suc 𝑦 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) |
217 |
157 216
|
sstrd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ⊆ ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) |
218 |
127
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) ) |
219 |
|
oeoa |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) |
220 |
33 106 106 219
|
mp3an2i |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o 𝑥 ) ) ) |
221 |
217 218 220
|
3sstr4d |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) |
222 |
|
simpr3 |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) |
223 |
59
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ∈ On ) |
224 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → 𝐶 ∈ On ) |
225 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → 𝑥 ∈ ( ω ↑o 𝐶 ) ) |
226 |
224 225
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) ) |
227 |
|
onelon |
⊢ ( ( ( ω ↑o 𝐶 ) ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → 𝑥 ∈ On ) |
228 |
35 227
|
sylan |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → 𝑥 ∈ On ) |
229 |
|
pm4.24 |
⊢ ( 𝑥 ∈ On ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ On ) ) |
230 |
228 229
|
sylib |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( 𝑥 ∈ On ∧ 𝑥 ∈ On ) ) |
231 |
|
oacl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑥 +o 𝑥 ) ∈ On ) |
232 |
230 231
|
syl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( 𝑥 +o 𝑥 ) ∈ On ) |
233 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ( 𝑥 +o 𝑥 ) ∈ On ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On ) |
234 |
33 232 233
|
sylancr |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On ) |
235 |
226 234
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On ) |
236 |
55
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) |
237 |
|
omwordri |
⊢ ( ( 𝐴 ∈ On ∧ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) ) |
238 |
223 235 236 237
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) ) |
239 |
222 238
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
240 |
226 230 231
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 +o 𝑥 ) ∈ On ) |
241 |
36
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o 𝐶 ) ∈ On ) |
242 |
|
oeoa |
⊢ ( ( ω ∈ On ∧ ( 𝑥 +o 𝑥 ) ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
243 |
33 240 241 242
|
mp3an2i |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
244 |
226 228
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝑥 ∈ On ) |
245 |
|
oaass |
⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) = ( 𝑥 +o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) ) |
246 |
244 244 241 245
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) = ( 𝑥 +o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) ) |
247 |
|
simpr1 |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝑥 ∈ ( ω ↑o 𝐶 ) ) |
248 |
|
ssidd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o 𝐶 ) ⊆ ( ω ↑o 𝐶 ) ) |
249 |
|
oaabs2 |
⊢ ( ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ↑o 𝐶 ) ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ ( ω ↑o 𝐶 ) ) → ( 𝑥 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
250 |
247 241 248 249
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
251 |
250
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 +o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) |
252 |
246 251 250
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
253 |
252
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ( 𝑥 +o 𝑥 ) +o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
254 |
243 253
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ↑o ( 𝑥 +o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
255 |
239 254
|
sseqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
256 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) ) |
257 |
256 167
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = 1o ) |
258 |
257
|
uneq2d |
⊢ ( 𝑥 = ∅ → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ∪ 1o ) ) |
259 |
33
|
oneluni |
⊢ ( 1o ∈ ω → ( ω ∪ 1o ) = ω ) |
260 |
63 259
|
ax-mp |
⊢ ( ω ∪ 1o ) = ω |
261 |
260 163
|
eqtr4i |
⊢ ( ω ∪ 1o ) = ( ω ↑o 1o ) |
262 |
258 261
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 1o ) ) |
263 |
262
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 1o ) ) |
264 |
263
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
265 |
224
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → 𝐶 ∈ On ) |
266 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ∅ ∈ On ) → ( ω ↑o ∅ ) ∈ On ) |
267 |
33 73 266
|
mp2an |
⊢ ( ω ↑o ∅ ) ∈ On |
268 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ( ω ↑o ∅ ) ∈ On ) → ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ) |
269 |
33 267 268
|
mp2an |
⊢ ( ω ↑o ( ω ↑o ∅ ) ) ∈ On |
270 |
269
|
2a1i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ) ) |
271 |
270 54
|
jca2 |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ( ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) ) ) |
272 |
167
|
oveq2i |
⊢ ( ω ↑o ( ω ↑o ∅ ) ) = ( ω ↑o 1o ) |
273 |
272 163
|
eqtri |
⊢ ( ω ↑o ( ω ↑o ∅ ) ) = ω |
274 |
|
ssun1 |
⊢ ω ⊆ ( ω ∪ ( ω ↑o 𝑥 ) ) |
275 |
273 274
|
eqsstri |
⊢ ( ω ↑o ( ω ↑o ∅ ) ) ⊆ ( ω ∪ ( ω ↑o 𝑥 ) ) |
276 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ) |
277 |
275 276
|
sstrid |
⊢ ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 ) |
278 |
277
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 ) |
279 |
57
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ∈ 𝐵 ) |
280 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
281 |
279 280
|
eleqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
282 |
278 281
|
jca |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 ∧ 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
283 |
282
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 ∧ 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
284 |
|
ontr2 |
⊢ ( ( ( ω ↑o ( ω ↑o ∅ ) ) ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( ( ( ω ↑o ( ω ↑o ∅ ) ) ⊆ 𝐴 ∧ 𝐴 ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) → ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
285 |
271 283 284
|
syl6ci |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
286 |
|
oeord |
⊢ ( ( ∅ ∈ On ∧ 𝐶 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( ∅ ∈ 𝐶 ↔ ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ) ) |
287 |
73 65 286
|
mp3an13 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ) ) |
288 |
65
|
a1i |
⊢ ( 𝐶 ∈ On → ω ∈ ( On ∖ 2o ) ) |
289 |
|
oeord |
⊢ ( ( ( ω ↑o ∅ ) ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
290 |
267 35 288 289
|
mp3an2i |
⊢ ( 𝐶 ∈ On → ( ( ω ↑o ∅ ) ∈ ( ω ↑o 𝐶 ) ↔ ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
291 |
287 290
|
bitrd |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
292 |
291
|
biimprd |
⊢ ( 𝐶 ∈ On → ( ( ω ↑o ( ω ↑o ∅ ) ) ∈ ( ω ↑o ( ω ↑o 𝐶 ) ) → ∅ ∈ 𝐶 ) ) |
293 |
285 292
|
sylcom |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → ∅ ∈ 𝐶 ) ) |
294 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
295 |
|
ordsucss |
⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 → suc ∅ ⊆ 𝐶 ) ) |
296 |
94
|
sseq1i |
⊢ ( 1o ⊆ 𝐶 ↔ suc ∅ ⊆ 𝐶 ) |
297 |
295 296
|
imbitrrdi |
⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 → 1o ⊆ 𝐶 ) ) |
298 |
294 297
|
syl |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → 1o ⊆ 𝐶 ) ) |
299 |
293 298
|
sylcom |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On → 1o ⊆ 𝐶 ) ) |
300 |
265 299
|
jcai |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) ) |
301 |
33
|
a1i |
⊢ ( 𝐶 ∈ On → ω ∈ On ) |
302 |
80
|
a1i |
⊢ ( 𝐶 ∈ On → 1o ∈ On ) |
303 |
301 302 35
|
3jca |
⊢ ( 𝐶 ∈ On → ( ω ∈ On ∧ 1o ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) ) |
304 |
303
|
adantr |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( ω ∈ On ∧ 1o ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) ) |
305 |
|
oeoa |
⊢ ( ( ω ∈ On ∧ 1o ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( 1o +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
306 |
304 305
|
syl |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( ω ↑o ( 1o +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
307 |
63
|
a1i |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → 1o ∈ ω ) |
308 |
35
|
adantr |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( ω ↑o 𝐶 ) ∈ On ) |
309 |
|
oeword |
⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 1o ⊆ 𝐶 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝐶 ) ) ) |
310 |
80 65 309
|
mp3an13 |
⊢ ( 𝐶 ∈ On → ( 1o ⊆ 𝐶 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝐶 ) ) ) |
311 |
310
|
biimpa |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝐶 ) ) |
312 |
163 311
|
eqsstrrid |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ω ⊆ ( ω ↑o 𝐶 ) ) |
313 |
|
oaabs |
⊢ ( ( ( 1o ∈ ω ∧ ( ω ↑o 𝐶 ) ∈ On ) ∧ ω ⊆ ( ω ↑o 𝐶 ) ) → ( 1o +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
314 |
307 308 312 313
|
syl21anc |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( 1o +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
315 |
314
|
oveq2d |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( ω ↑o ( 1o +o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
316 |
306 315
|
eqtr3d |
⊢ ( ( 𝐶 ∈ On ∧ 1o ⊆ 𝐶 ) → ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
317 |
300 316
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ↑o 1o ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
318 |
264 317
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ 𝑥 = ∅ ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
319 |
244 195 196
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ∅ ∈ 𝑥 → suc ∅ ⊆ 𝑥 ) ) |
320 |
319
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → suc ∅ ⊆ 𝑥 ) |
321 |
94 320
|
eqsstrid |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → 1o ⊆ 𝑥 ) |
322 |
247
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → 𝑥 ∈ ( ω ↑o 𝐶 ) ) |
323 |
241 322 227
|
syl2an2r |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → 𝑥 ∈ On ) |
324 |
65
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ω ∈ ( On ∖ 2o ) ) |
325 |
|
oeword |
⊢ ( ( 1o ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 1o ⊆ 𝑥 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) ) |
326 |
80 323 324 325
|
mp3an2i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( 1o ⊆ 𝑥 ↔ ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) ) |
327 |
321 326
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o 1o ) ⊆ ( ω ↑o 𝑥 ) ) |
328 |
163 327
|
eqsstrrid |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ω ⊆ ( ω ↑o 𝑥 ) ) |
329 |
|
ssequn1 |
⊢ ( ω ⊆ ( ω ↑o 𝑥 ) ↔ ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) |
330 |
328 329
|
sylib |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ∪ ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) |
331 |
330
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
332 |
241
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o 𝐶 ) ∈ On ) |
333 |
|
oeoa |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( ω ↑o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
334 |
33 323 332 333
|
mp3an2i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( ( ω ↑o 𝑥 ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
335 |
|
ssidd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o 𝐶 ) ⊆ ( ω ↑o 𝐶 ) ) |
336 |
322 332 335 249
|
syl21anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
337 |
336
|
oveq2d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ω ↑o ( 𝑥 +o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
338 |
331 334 337
|
3eqtr2d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) ∧ ∅ ∈ 𝑥 ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
339 |
226 228 201
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
340 |
318 338 339
|
mpjaodan |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
341 |
276
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ) |
342 |
33 228 75
|
sylancr |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
343 |
342 33
|
jctil |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ ( ω ↑o 𝐶 ) ) → ( ω ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) ) |
344 |
|
onun2 |
⊢ ( ( ω ∈ On ∧ ( ω ↑o 𝑥 ) ∈ On ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ∈ On ) |
345 |
226 343 344
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ∪ ( ω ↑o 𝑥 ) ) ∈ On ) |
346 |
|
omwordri |
⊢ ( ( ( ω ∪ ( ω ↑o 𝑥 ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( ω ↑o ( ω ↑o 𝐶 ) ) ∈ On ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) ) |
347 |
345 223 236 346
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) ) |
348 |
341 347
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( ω ∪ ( ω ↑o 𝑥 ) ) ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
349 |
340 348
|
eqsstrrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ω ↑o ( ω ↑o 𝐶 ) ) ⊆ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
350 |
255 349
|
eqssd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) |
351 |
49
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( ( 𝐴 ·o 𝐵 ) = 𝐵 ↔ ( 𝐴 ·o ( ω ↑o ( ω ↑o 𝐶 ) ) ) = ( ω ↑o ( ω ↑o 𝐶 ) ) ) ) |
352 |
350 351
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) |
353 |
352
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
354 |
353
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( ( 𝑥 ∈ ( ω ↑o 𝐶 ) ∧ ( ω ∪ ( ω ↑o 𝑥 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ω ↑o ( 𝑥 +o 𝑥 ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
355 |
141 143 221 354
|
mp3and |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) |
356 |
355
|
ex |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → ( ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
357 |
71 356
|
syl5 |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) ∧ 𝑧 ∈ ( ω ↑o 𝑥 ) ) → ( ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
358 |
357
|
rexlimdva |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ ( ω ∖ 1o ) ) → ( ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
359 |
358
|
rexlimdva |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) ∧ 𝑥 ∈ On ) → ( ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
360 |
359
|
rexlimdva |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
361 |
360
|
exlimdv |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ∃ 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
362 |
70 361
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( ∃! 𝑤 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( ω ∖ 1o ) ∃ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝑤 = 〈 𝑥 , 𝑦 , 𝑧 〉 ∧ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o 𝑧 ) = 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
363 |
69 362
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ∧ ω ⊆ 𝐴 ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) |
364 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
365 |
59 364
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → Ord 𝐴 ) |
366 |
|
ordtri2or |
⊢ ( ( Ord 𝐴 ∧ Ord ω ) → ( 𝐴 ∈ ω ∨ ω ⊆ 𝐴 ) ) |
367 |
365 158 366
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( 𝐴 ∈ ω ∨ ω ⊆ 𝐴 ) ) |
368 |
51 363 367
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) |
369 |
368
|
ex |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
370 |
6 30 369
|
3jaod |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 = ∅ ∨ 𝐵 = 2o ∨ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) ) |
371 |
370
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 = ∅ ∨ 𝐵 = 2o ∨ ( 𝐵 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) = 𝐵 ) |