Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | on0eqel | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0elon | ⊢ ∅ ∈ On | |
| 3 | onsseleq | ⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐴 ↔ ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ On → ( ∅ ⊆ 𝐴 ↔ ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ) ) |
| 5 | 1 4 | mpbii | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ) |
| 6 | eqcom | ⊢ ( ∅ = 𝐴 ↔ 𝐴 = ∅ ) | |
| 7 | 6 | orbi2i | ⊢ ( ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ↔ ( ∅ ∈ 𝐴 ∨ 𝐴 = ∅ ) ) |
| 8 | orcom | ⊢ ( ( ∅ ∈ 𝐴 ∨ 𝐴 = ∅ ) ↔ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ↔ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
| 10 | 5 9 | sylib | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |