| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
|- (/) C_ A |
| 2 |
|
0elon |
|- (/) e. On |
| 3 |
|
onsseleq |
|- ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) |
| 4 |
2 3
|
mpan |
|- ( A e. On -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) |
| 5 |
1 4
|
mpbii |
|- ( A e. On -> ( (/) e. A \/ (/) = A ) ) |
| 6 |
|
eqcom |
|- ( (/) = A <-> A = (/) ) |
| 7 |
6
|
orbi2i |
|- ( ( (/) e. A \/ (/) = A ) <-> ( (/) e. A \/ A = (/) ) ) |
| 8 |
|
orcom |
|- ( ( (/) e. A \/ A = (/) ) <-> ( A = (/) \/ (/) e. A ) ) |
| 9 |
7 8
|
bitri |
|- ( ( (/) e. A \/ (/) = A ) <-> ( A = (/) \/ (/) e. A ) ) |
| 10 |
5 9
|
sylib |
|- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |