Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
|- (/) C_ A |
2 |
|
0elon |
|- (/) e. On |
3 |
|
onsseleq |
|- ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) |
4 |
2 3
|
mpan |
|- ( A e. On -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) |
5 |
1 4
|
mpbii |
|- ( A e. On -> ( (/) e. A \/ (/) = A ) ) |
6 |
|
eqcom |
|- ( (/) = A <-> A = (/) ) |
7 |
6
|
orbi2i |
|- ( ( (/) e. A \/ (/) = A ) <-> ( (/) e. A \/ A = (/) ) ) |
8 |
|
orcom |
|- ( ( (/) e. A \/ A = (/) ) <-> ( A = (/) \/ (/) e. A ) ) |
9 |
7 8
|
bitri |
|- ( ( (/) e. A \/ (/) = A ) <-> ( A = (/) \/ (/) e. A ) ) |
10 |
5 9
|
sylib |
|- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |