Metamath Proof Explorer


Theorem on0eqel

Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004)

Ref Expression
Assertion on0eqel
|- ( A e. On -> ( A = (/) \/ (/) e. A ) )

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ A
2 0elon
 |-  (/) e. On
3 onsseleq
 |-  ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) )
4 2 3 mpan
 |-  ( A e. On -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) )
5 1 4 mpbii
 |-  ( A e. On -> ( (/) e. A \/ (/) = A ) )
6 eqcom
 |-  ( (/) = A <-> A = (/) )
7 6 orbi2i
 |-  ( ( (/) e. A \/ (/) = A ) <-> ( (/) e. A \/ A = (/) ) )
8 orcom
 |-  ( ( (/) e. A \/ A = (/) ) <-> ( A = (/) \/ (/) e. A ) )
9 7 8 bitri
 |-  ( ( (/) e. A \/ (/) = A ) <-> ( A = (/) \/ (/) e. A ) )
10 5 9 sylib
 |-  ( A e. On -> ( A = (/) \/ (/) e. A ) )