Metamath Proof Explorer


Theorem on0eqel

Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004)

Ref Expression
Assertion on0eqel AOnA=A

Proof

Step Hyp Ref Expression
1 0ss A
2 0elon On
3 onsseleq OnAOnAA=A
4 2 3 mpan AOnAA=A
5 1 4 mpbii AOnA=A
6 eqcom =AA=
7 6 orbi2i A=AAA=
8 orcom AA=A=A
9 7 8 bitri A=AA=A
10 5 9 sylib AOnA=A