Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | on.1 | ⊢ 𝐴 ∈ On | |
| Assertion | oneluni | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | ⊢ 𝐴 ∈ On | |
| 2 | 1 | onelssi | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) |
| 3 | ssequn2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |