| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( 𝐶  =  ∅  →  ( 𝐴  ∈  𝐶  ↔  𝐴  ∈  ∅ ) ) | 
						
							| 2 |  | noel | ⊢ ¬  𝐴  ∈  ∅ | 
						
							| 3 | 2 | pm2.21i | ⊢ ( 𝐴  ∈  ∅  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) | 
						
							| 4 | 1 3 | biimtrdi | ⊢ ( 𝐶  =  ∅  →  ( 𝐴  ∈  𝐶  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 5 | 4 | com12 | ⊢ ( 𝐴  ∈  𝐶  →  ( 𝐶  =  ∅  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( 𝐶  =  ∅  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) | 
						
							| 8 |  | omelon | ⊢ ω  ∈  On | 
						
							| 9 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  𝐷  ∈  On )  →  ( ω  ↑o  𝐷 )  ∈  On ) | 
						
							| 10 | 8 9 | mpan | ⊢ ( 𝐷  ∈  On  →  ( ω  ↑o  𝐷 )  ∈  On ) | 
						
							| 11 | 10 8 | jctil | ⊢ ( 𝐷  ∈  On  →  ( ω  ∈  On  ∧  ( ω  ↑o  𝐷 )  ∈  On ) ) | 
						
							| 12 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  ( ω  ↑o  𝐷 )  ∈  On )  →  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∈  On ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐷  ∈  On  →  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∈  On ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∈  On ) | 
						
							| 15 | 7 14 | eqeltrd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  𝐶  ∈  On ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  𝐴  ∈  𝐶 ) | 
						
							| 17 |  | onelon | ⊢ ( ( 𝐶  ∈  On  ∧  𝐴  ∈  𝐶 )  →  𝐴  ∈  On ) | 
						
							| 18 | 15 16 17 | syl2an2 | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  𝐴  ∈  On ) | 
						
							| 19 |  | on0eqel | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∅  ∨  ∅  ∈  𝐴 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  =  ∅  ∨  ∅  ∈  𝐴 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ( ∅  ·o  𝐵 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  𝐵  ∈  𝐶 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  𝐵  ∈  𝐶 ) | 
						
							| 24 |  | onelon | ⊢ ( ( 𝐶  ∈  On  ∧  𝐵  ∈  𝐶 )  →  𝐵  ∈  On ) | 
						
							| 25 | 15 23 24 | syl2an2 | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  𝐵  ∈  On ) | 
						
							| 26 |  | om0r | ⊢ ( 𝐵  ∈  On  →  ( ∅  ·o  𝐵 )  =  ∅ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( ∅  ·o  𝐵 )  =  ∅ ) | 
						
							| 28 | 21 27 | sylan9eqr | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  ∧  𝐴  =  ∅ )  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) | 
						
							| 29 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 30 |  | oen0 | ⊢ ( ( ( ω  ∈  On  ∧  ( ω  ↑o  𝐷 )  ∈  On )  ∧  ∅  ∈  ω )  →  ∅  ∈  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) | 
						
							| 31 | 11 29 30 | sylancl | ⊢ ( 𝐷  ∈  On  →  ∅  ∈  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ∅  ∈  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) | 
						
							| 33 | 32 7 | eleqtrrd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ∅  ∈  𝐶 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ∅  ∈  𝐶 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  ∧  𝐴  =  ∅ )  →  ∅  ∈  𝐶 ) | 
						
							| 36 | 28 35 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  ∧  𝐴  =  ∅ )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) | 
						
							| 37 | 36 | ex | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 38 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  →  𝐴  ∈  𝐶 ) | 
						
							| 39 | 15 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  𝐶  ∈  On ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  ∧  𝐶  ∈  On )  →  𝐶  ∈  On ) | 
						
							| 41 | 38 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  ∧  𝐶  ∈  On )  →  𝐴  ∈  𝐶 ) | 
						
							| 42 | 40 41 17 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  ∧  𝐶  ∈  On )  →  𝐴  ∈  On ) | 
						
							| 43 | 42 | ex | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐶  ∈  On  →  𝐴  ∈  On ) ) | 
						
							| 44 | 39 43 | jcai | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐶  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 45 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ∅  ∈  𝐴 ) | 
						
							| 46 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  𝐵  ∈  𝐶 ) | 
						
							| 47 |  | omordi | ⊢ ( ( ( 𝐶  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝐵  ∈  𝐶  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  𝐶 ) ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( ( ( 𝐶  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  𝐶 ) ) | 
						
							| 49 | 44 45 46 48 | syl21anc | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  𝐶 ) ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·o  𝐶 )  =  ( 𝐴  ·o  𝐶 ) ) | 
						
							| 51 | 50 | eliuni | ⊢ ( ( 𝐴  ∈  𝐶  ∧  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  𝐶 ) )  →  ( 𝐴  ·o  𝐵 )  ∈  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 ) ) | 
						
							| 52 | 38 49 51 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ·o  𝐵 )  ∈  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 ) ) | 
						
							| 53 |  | simpr | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  𝑥  =  ∅ )  →  𝑥  =  ∅ ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  𝑥  =  ∅ )  →  ( 𝑥  ·o  𝐶 )  =  ( ∅  ·o  𝐶 ) ) | 
						
							| 55 |  | om0r | ⊢ ( 𝐶  ∈  On  →  ( ∅  ·o  𝐶 )  =  ∅ ) | 
						
							| 56 | 15 55 | syl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ∅  ·o  𝐶 )  =  ∅ ) | 
						
							| 57 | 56 | ad2antrr | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  𝑥  =  ∅ )  →  ( ∅  ·o  𝐶 )  =  ∅ ) | 
						
							| 58 | 54 57 | eqtrd | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  𝑥  =  ∅ )  →  ( 𝑥  ·o  𝐶 )  =  ∅ ) | 
						
							| 59 |  | 0ss | ⊢ ∅  ⊆  𝐶 | 
						
							| 60 | 59 | a1i | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  𝑥  =  ∅ )  →  ∅  ⊆  𝐶 ) | 
						
							| 61 | 58 60 | eqsstrd | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  𝑥  =  ∅ )  →  ( 𝑥  ·o  𝐶 )  ⊆  𝐶 ) | 
						
							| 62 |  | id | ⊢ ( ( 𝑥  ∈  𝐶  ∧  ∅  ∈  𝑥 )  →  ( 𝑥  ∈  𝐶  ∧  ∅  ∈  𝑥 ) ) | 
						
							| 63 | 62 | adantll | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  ∅  ∈  𝑥 )  →  ( 𝑥  ∈  𝐶  ∧  ∅  ∈  𝑥 ) ) | 
						
							| 64 |  | simpll | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  ∅  ∈  𝑥 )  →  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) ) | 
						
							| 65 | 64 | 3mix3d | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  ∅  ∈  𝑥 )  →  ( 𝐶  =  ∅  ∨  𝐶  =  2o  ∨  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) ) ) | 
						
							| 66 |  | omabs2 | ⊢ ( ( ( 𝑥  ∈  𝐶  ∧  ∅  ∈  𝑥 )  ∧  ( 𝐶  =  ∅  ∨  𝐶  =  2o  ∨  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) ) )  →  ( 𝑥  ·o  𝐶 )  =  𝐶 ) | 
						
							| 67 | 63 65 66 | syl2anc | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  ∅  ∈  𝑥 )  →  ( 𝑥  ·o  𝐶 )  =  𝐶 ) | 
						
							| 68 |  | ssidd | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  ∅  ∈  𝑥 )  →  𝐶  ⊆  𝐶 ) | 
						
							| 69 | 67 68 | eqsstrd | ⊢ ( ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  ∧  ∅  ∈  𝑥 )  →  ( 𝑥  ·o  𝐶 )  ⊆  𝐶 ) | 
						
							| 70 |  | onelon | ⊢ ( ( 𝐶  ∈  On  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  On ) | 
						
							| 71 | 15 70 | sylan | ⊢ ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  On ) | 
						
							| 72 |  | on0eqel | ⊢ ( 𝑥  ∈  On  →  ( 𝑥  =  ∅  ∨  ∅  ∈  𝑥 ) ) | 
						
							| 73 | 71 72 | syl | ⊢ ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  →  ( 𝑥  =  ∅  ∨  ∅  ∈  𝑥 ) ) | 
						
							| 74 | 61 69 73 | mpjaodan | ⊢ ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  ∈  𝐶 )  →  ( 𝑥  ·o  𝐶 )  ⊆  𝐶 ) | 
						
							| 75 | 74 | iunssd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 )  ⊆  𝐶 ) | 
						
							| 76 |  | simpr | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  𝐷  ∈  On ) | 
						
							| 77 | 76 8 | jctil | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ω  ∈  On  ∧  𝐷  ∈  On ) ) | 
						
							| 78 |  | oen0 | ⊢ ( ( ( ω  ∈  On  ∧  𝐷  ∈  On )  ∧  ∅  ∈  ω )  →  ∅  ∈  ( ω  ↑o  𝐷 ) ) | 
						
							| 79 | 77 29 78 | sylancl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ∅  ∈  ( ω  ↑o  𝐷 ) ) | 
						
							| 80 | 77 9 | syl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ω  ↑o  𝐷 )  ∈  On ) | 
						
							| 81 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 82 |  | ondif2 | ⊢ ( ω  ∈  ( On  ∖  2o )  ↔  ( ω  ∈  On  ∧  1o  ∈  ω ) ) | 
						
							| 83 | 8 81 82 | mpbir2an | ⊢ ω  ∈  ( On  ∖  2o ) | 
						
							| 84 |  | oeordi | ⊢ ( ( ( ω  ↑o  𝐷 )  ∈  On  ∧  ω  ∈  ( On  ∖  2o ) )  →  ( ∅  ∈  ( ω  ↑o  𝐷 )  →  ( ω  ↑o  ∅ )  ∈  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) ) | 
						
							| 85 | 80 83 84 | sylancl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ∅  ∈  ( ω  ↑o  𝐷 )  →  ( ω  ↑o  ∅ )  ∈  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) ) | 
						
							| 86 | 79 85 | mpd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ω  ↑o  ∅ )  ∈  ( ω  ↑o  ( ω  ↑o  𝐷 ) ) ) | 
						
							| 87 |  | oe0 | ⊢ ( ω  ∈  On  →  ( ω  ↑o  ∅ )  =  1o ) | 
						
							| 88 | 8 87 | ax-mp | ⊢ ( ω  ↑o  ∅ )  =  1o | 
						
							| 89 | 88 | eqcomi | ⊢ 1o  =  ( ω  ↑o  ∅ ) | 
						
							| 90 | 89 | a1i | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  1o  =  ( ω  ↑o  ∅ ) ) | 
						
							| 91 | 86 90 7 | 3eltr4d | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  1o  ∈  𝐶 ) | 
						
							| 92 |  | oveq1 | ⊢ ( 𝑥  =  1o  →  ( 𝑥  ·o  𝐶 )  =  ( 1o  ·o  𝐶 ) ) | 
						
							| 93 |  | om1r | ⊢ ( 𝐶  ∈  On  →  ( 1o  ·o  𝐶 )  =  𝐶 ) | 
						
							| 94 | 15 93 | syl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( 1o  ·o  𝐶 )  =  𝐶 ) | 
						
							| 95 | 92 94 | sylan9eqr | ⊢ ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  =  1o )  →  ( 𝑥  ·o  𝐶 )  =  𝐶 ) | 
						
							| 96 | 95 | sseq2d | ⊢ ( ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  ∧  𝑥  =  1o )  →  ( 𝐶  ⊆  ( 𝑥  ·o  𝐶 )  ↔  𝐶  ⊆  𝐶 ) ) | 
						
							| 97 |  | ssidd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  𝐶  ⊆  𝐶 ) | 
						
							| 98 | 91 96 97 | rspcedvd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ∃ 𝑥  ∈  𝐶 𝐶  ⊆  ( 𝑥  ·o  𝐶 ) ) | 
						
							| 99 |  | ssiun | ⊢ ( ∃ 𝑥  ∈  𝐶 𝐶  ⊆  ( 𝑥  ·o  𝐶 )  →  𝐶  ⊆  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 ) ) | 
						
							| 100 | 98 99 | syl | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  𝐶  ⊆  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 ) ) | 
						
							| 101 | 75 100 | eqssd | ⊢ ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 )  =  𝐶 ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ∪  𝑥  ∈  𝐶 ( 𝑥  ·o  𝐶 )  =  𝐶 ) | 
						
							| 103 | 52 102 | eleqtrd | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) | 
						
							| 104 | 103 | ex | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 105 | 104 | 3expia | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( ∅  ∈  𝐴  →  ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) ) | 
						
							| 106 | 105 | com23 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( ∅  ∈  𝐴  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) ) | 
						
							| 107 | 106 | imp | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( ∅  ∈  𝐴  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 108 | 37 107 | jaod | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( ( 𝐴  =  ∅  ∨  ∅  ∈  𝐴 )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 109 | 20 108 | mpd | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) | 
						
							| 110 | 109 | ex | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 111 | 6 110 | jaod | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( ( 𝐶  =  ∅  ∨  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) ) | 
						
							| 112 | 111 | imp | ⊢ ( ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  ∧  ( 𝐶  =  ∅  ∨  ( 𝐶  =  ( ω  ↑o  ( ω  ↑o  𝐷 ) )  ∧  𝐷  ∈  On ) ) )  →  ( 𝐴  ·o  𝐵 )  ∈  𝐶 ) |