Metamath Proof Explorer


Theorem omcl2

Description: Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025)

Ref Expression
Assertion omcl2 ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐶 = ∅ → ( 𝐴𝐶𝐴 ∈ ∅ ) )
2 noel ¬ 𝐴 ∈ ∅
3 2 pm2.21i ( 𝐴 ∈ ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 )
4 1 3 biimtrdi ( 𝐶 = ∅ → ( 𝐴𝐶 → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
5 4 com12 ( 𝐴𝐶 → ( 𝐶 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
6 5 adantr ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐶 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
7 simpl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) )
8 omelon ω ∈ On
9 oecl ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On )
10 8 9 mpan ( 𝐷 ∈ On → ( ω ↑o 𝐷 ) ∈ On )
11 10 8 jctil ( 𝐷 ∈ On → ( ω ∈ On ∧ ( ω ↑o 𝐷 ) ∈ On ) )
12 oecl ( ( ω ∈ On ∧ ( ω ↑o 𝐷 ) ∈ On ) → ( ω ↑o ( ω ↑o 𝐷 ) ) ∈ On )
13 11 12 syl ( 𝐷 ∈ On → ( ω ↑o ( ω ↑o 𝐷 ) ) ∈ On )
14 13 adantl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ↑o ( ω ↑o 𝐷 ) ) ∈ On )
15 7 14 eqeltrd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 ∈ On )
16 simpll ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐴𝐶 )
17 onelon ( ( 𝐶 ∈ On ∧ 𝐴𝐶 ) → 𝐴 ∈ On )
18 15 16 17 syl2an2 ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐴 ∈ On )
19 on0eqel ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
20 18 19 syl ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
21 oveq1 ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) )
22 simpr ( ( 𝐴𝐶𝐵𝐶 ) → 𝐵𝐶 )
23 22 adantr ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐵𝐶 )
24 onelon ( ( 𝐶 ∈ On ∧ 𝐵𝐶 ) → 𝐵 ∈ On )
25 15 23 24 syl2an2 ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ On )
26 om0r ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ )
27 25 26 syl ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( ∅ ·o 𝐵 ) = ∅ )
28 21 27 sylan9eqr ( ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ )
29 peano1 ∅ ∈ ω
30 oen0 ( ( ( ω ∈ On ∧ ( ω ↑o 𝐷 ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) )
31 11 29 30 sylancl ( 𝐷 ∈ On → ∅ ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) )
32 31 adantl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∅ ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) )
33 32 7 eleqtrrd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∅ ∈ 𝐶 )
34 33 adantl ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ∅ ∈ 𝐶 )
35 34 adantr ( ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐴 = ∅ ) → ∅ ∈ 𝐶 )
36 28 35 eqeltrd ( ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 )
37 36 ex ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
38 simp1 ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) → 𝐴𝐶 )
39 15 adantl ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On )
40 simpr ( ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐶 ∈ On ) → 𝐶 ∈ On )
41 38 ad2antrr ( ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐶 ∈ On ) → 𝐴𝐶 )
42 40 41 17 syl2anc ( ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐶 ∈ On ) → 𝐴 ∈ On )
43 42 ex ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On → 𝐴 ∈ On ) )
44 39 43 jcai ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) )
45 simpl3 ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ∅ ∈ 𝐴 )
46 simpl2 ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐵𝐶 )
47 omordi ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )
48 47 imp ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐵𝐶 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) )
49 44 45 46 48 syl21anc ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) )
50 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ·o 𝐶 ) = ( 𝐴 ·o 𝐶 ) )
51 50 eliuni ( ( 𝐴𝐶 ∧ ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝑥𝐶 ( 𝑥 ·o 𝐶 ) )
52 38 49 51 syl2an2r ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝑥𝐶 ( 𝑥 ·o 𝐶 ) )
53 simpr ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ )
54 53 oveq1d ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( 𝑥 ·o 𝐶 ) = ( ∅ ·o 𝐶 ) )
55 om0r ( 𝐶 ∈ On → ( ∅ ·o 𝐶 ) = ∅ )
56 15 55 syl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ∅ ·o 𝐶 ) = ∅ )
57 56 ad2antrr ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( ∅ ·o 𝐶 ) = ∅ )
58 54 57 eqtrd ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( 𝑥 ·o 𝐶 ) = ∅ )
59 0ss ∅ ⊆ 𝐶
60 59 a1i ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ∅ ⊆ 𝐶 )
61 58 60 eqsstrd ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 )
62 id ( ( 𝑥𝐶 ∧ ∅ ∈ 𝑥 ) → ( 𝑥𝐶 ∧ ∅ ∈ 𝑥 ) )
63 62 adantll ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥𝐶 ∧ ∅ ∈ 𝑥 ) )
64 simpll ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) )
65 64 3mix3d ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝐶 = ∅ ∨ 𝐶 = 2o ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) )
66 omabs2 ( ( ( 𝑥𝐶 ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐶 = ∅ ∨ 𝐶 = 2o ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝑥 ·o 𝐶 ) = 𝐶 )
67 63 65 66 syl2anc ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 ·o 𝐶 ) = 𝐶 )
68 ssidd ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ ∅ ∈ 𝑥 ) → 𝐶𝐶 )
69 67 68 eqsstrd ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 )
70 onelon ( ( 𝐶 ∈ On ∧ 𝑥𝐶 ) → 𝑥 ∈ On )
71 15 70 sylan ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) → 𝑥 ∈ On )
72 on0eqel ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) )
73 71 72 syl ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) )
74 61 69 73 mpjaodan ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥𝐶 ) → ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 )
75 74 iunssd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝑥𝐶 ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 )
76 simpr ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐷 ∈ On )
77 76 8 jctil ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ∈ On ∧ 𝐷 ∈ On ) )
78 oen0 ( ( ( ω ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐷 ) )
79 77 29 78 sylancl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∅ ∈ ( ω ↑o 𝐷 ) )
80 77 9 syl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On )
81 1onn 1o ∈ ω
82 ondif2 ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) )
83 8 81 82 mpbir2an ω ∈ ( On ∖ 2o )
84 oeordi ( ( ( ω ↑o 𝐷 ) ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( ∅ ∈ ( ω ↑o 𝐷 ) → ( ω ↑o ∅ ) ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) )
85 80 83 84 sylancl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ∅ ∈ ( ω ↑o 𝐷 ) → ( ω ↑o ∅ ) ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) )
86 79 85 mpd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ↑o ∅ ) ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) )
87 oe0 ( ω ∈ On → ( ω ↑o ∅ ) = 1o )
88 8 87 ax-mp ( ω ↑o ∅ ) = 1o
89 88 eqcomi 1o = ( ω ↑o ∅ )
90 89 a1i ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 1o = ( ω ↑o ∅ ) )
91 86 90 7 3eltr4d ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 1o𝐶 )
92 oveq1 ( 𝑥 = 1o → ( 𝑥 ·o 𝐶 ) = ( 1o ·o 𝐶 ) )
93 om1r ( 𝐶 ∈ On → ( 1o ·o 𝐶 ) = 𝐶 )
94 15 93 syl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 1o ·o 𝐶 ) = 𝐶 )
95 92 94 sylan9eqr ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = 1o ) → ( 𝑥 ·o 𝐶 ) = 𝐶 )
96 95 sseq2d ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = 1o ) → ( 𝐶 ⊆ ( 𝑥 ·o 𝐶 ) ↔ 𝐶𝐶 ) )
97 ssidd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶𝐶 )
98 91 96 97 rspcedvd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∃ 𝑥𝐶 𝐶 ⊆ ( 𝑥 ·o 𝐶 ) )
99 ssiun ( ∃ 𝑥𝐶 𝐶 ⊆ ( 𝑥 ·o 𝐶 ) → 𝐶 𝑥𝐶 ( 𝑥 ·o 𝐶 ) )
100 98 99 syl ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 𝑥𝐶 ( 𝑥 ·o 𝐶 ) )
101 75 100 eqssd ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝑥𝐶 ( 𝑥 ·o 𝐶 ) = 𝐶 )
102 101 adantl ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝑥𝐶 ( 𝑥 ·o 𝐶 ) = 𝐶 )
103 52 102 eleqtrd ( ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 )
104 103 ex ( ( 𝐴𝐶𝐵𝐶 ∧ ∅ ∈ 𝐴 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
105 104 3expia ( ( 𝐴𝐶𝐵𝐶 ) → ( ∅ ∈ 𝐴 → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) )
106 105 com23 ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) )
107 106 imp ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
108 37 107 jaod ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
109 20 108 mpd ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 )
110 109 ex ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
111 6 110 jaod ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) )
112 111 imp ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 )