Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝐶 = ∅ → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ ∅ ) ) |
2 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
3 |
2
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
4 |
1 3
|
biimtrdi |
⊢ ( 𝐶 = ∅ → ( 𝐴 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
5 |
4
|
com12 |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐶 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
7 |
|
simpl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ) |
8 |
|
omelon |
⊢ ω ∈ On |
9 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
10 |
8 9
|
mpan |
⊢ ( 𝐷 ∈ On → ( ω ↑o 𝐷 ) ∈ On ) |
11 |
10 8
|
jctil |
⊢ ( 𝐷 ∈ On → ( ω ∈ On ∧ ( ω ↑o 𝐷 ) ∈ On ) ) |
12 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ( ω ↑o 𝐷 ) ∈ On ) → ( ω ↑o ( ω ↑o 𝐷 ) ) ∈ On ) |
13 |
11 12
|
syl |
⊢ ( 𝐷 ∈ On → ( ω ↑o ( ω ↑o 𝐷 ) ) ∈ On ) |
14 |
13
|
adantl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ↑o ( ω ↑o 𝐷 ) ) ∈ On ) |
15 |
7 14
|
eqeltrd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 ∈ On ) |
16 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐴 ∈ 𝐶 ) |
17 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ On ) |
18 |
15 16 17
|
syl2an2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐴 ∈ On ) |
19 |
|
on0eqel |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
21 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ 𝐶 ) |
24 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ On ) |
25 |
15 23 24
|
syl2an2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ On ) |
26 |
|
om0r |
⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) |
27 |
25 26
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( ∅ ·o 𝐵 ) = ∅ ) |
28 |
21 27
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
29 |
|
peano1 |
⊢ ∅ ∈ ω |
30 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ ( ω ↑o 𝐷 ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) |
31 |
11 29 30
|
sylancl |
⊢ ( 𝐷 ∈ On → ∅ ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∅ ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) |
33 |
32 7
|
eleqtrrd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∅ ∈ 𝐶 ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ∅ ∈ 𝐶 ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐴 = ∅ ) → ∅ ∈ 𝐶 ) |
36 |
28 35
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
37 |
36
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
38 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) → 𝐴 ∈ 𝐶 ) |
39 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On ) |
40 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐶 ∈ On ) → 𝐶 ∈ On ) |
41 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐶 ∈ On ) → 𝐴 ∈ 𝐶 ) |
42 |
40 41 17
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ∧ 𝐶 ∈ On ) → 𝐴 ∈ On ) |
43 |
42
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
44 |
39 43
|
jcai |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ) |
45 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ∅ ∈ 𝐴 ) |
46 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ 𝐶 ) |
47 |
|
omordi |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |
48 |
47
|
imp |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) |
49 |
44 45 46 48
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) |
50 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·o 𝐶 ) = ( 𝐴 ·o 𝐶 ) ) |
51 |
50
|
eliuni |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) → ( 𝐴 ·o 𝐵 ) ∈ ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) ) |
52 |
38 49 51
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) ) |
53 |
|
simpr |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ ) |
54 |
53
|
oveq1d |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 = ∅ ) → ( 𝑥 ·o 𝐶 ) = ( ∅ ·o 𝐶 ) ) |
55 |
|
om0r |
⊢ ( 𝐶 ∈ On → ( ∅ ·o 𝐶 ) = ∅ ) |
56 |
15 55
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ∅ ·o 𝐶 ) = ∅ ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ∅ ·o 𝐶 ) = ∅ ) |
58 |
54 57
|
eqtrd |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 = ∅ ) → ( 𝑥 ·o 𝐶 ) = ∅ ) |
59 |
|
0ss |
⊢ ∅ ⊆ 𝐶 |
60 |
59
|
a1i |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 = ∅ ) → ∅ ⊆ 𝐶 ) |
61 |
58 60
|
eqsstrd |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 = ∅ ) → ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 ) |
62 |
|
id |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥 ) → ( 𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥 ) ) |
63 |
62
|
adantll |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥 ) ) |
64 |
|
simpll |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) |
65 |
64
|
3mix3d |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝐶 = ∅ ∨ 𝐶 = 2o ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) |
66 |
|
omabs2 |
⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐶 = ∅ ∨ 𝐶 = 2o ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝑥 ·o 𝐶 ) = 𝐶 ) |
67 |
63 65 66
|
syl2anc |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 ·o 𝐶 ) = 𝐶 ) |
68 |
|
ssidd |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ ∅ ∈ 𝑥 ) → 𝐶 ⊆ 𝐶 ) |
69 |
67 68
|
eqsstrd |
⊢ ( ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) ∧ ∅ ∈ 𝑥 ) → ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 ) |
70 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ On ) |
71 |
15 70
|
sylan |
⊢ ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ On ) |
72 |
|
on0eqel |
⊢ ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
73 |
71 72
|
syl |
⊢ ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
74 |
61 69 73
|
mpjaodan |
⊢ ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 ) |
75 |
74
|
iunssd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) ⊆ 𝐶 ) |
76 |
|
simpr |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐷 ∈ On ) |
77 |
76 8
|
jctil |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ∈ On ∧ 𝐷 ∈ On ) ) |
78 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
79 |
77 29 78
|
sylancl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
80 |
77 9
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
81 |
|
1onn |
⊢ 1o ∈ ω |
82 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
83 |
8 81 82
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
84 |
|
oeordi |
⊢ ( ( ( ω ↑o 𝐷 ) ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( ∅ ∈ ( ω ↑o 𝐷 ) → ( ω ↑o ∅ ) ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) ) |
85 |
80 83 84
|
sylancl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ∅ ∈ ( ω ↑o 𝐷 ) → ( ω ↑o ∅ ) ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) ) |
86 |
79 85
|
mpd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ω ↑o ∅ ) ∈ ( ω ↑o ( ω ↑o 𝐷 ) ) ) |
87 |
|
oe0 |
⊢ ( ω ∈ On → ( ω ↑o ∅ ) = 1o ) |
88 |
8 87
|
ax-mp |
⊢ ( ω ↑o ∅ ) = 1o |
89 |
88
|
eqcomi |
⊢ 1o = ( ω ↑o ∅ ) |
90 |
89
|
a1i |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 1o = ( ω ↑o ∅ ) ) |
91 |
86 90 7
|
3eltr4d |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 1o ∈ 𝐶 ) |
92 |
|
oveq1 |
⊢ ( 𝑥 = 1o → ( 𝑥 ·o 𝐶 ) = ( 1o ·o 𝐶 ) ) |
93 |
|
om1r |
⊢ ( 𝐶 ∈ On → ( 1o ·o 𝐶 ) = 𝐶 ) |
94 |
15 93
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 1o ·o 𝐶 ) = 𝐶 ) |
95 |
92 94
|
sylan9eqr |
⊢ ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = 1o ) → ( 𝑥 ·o 𝐶 ) = 𝐶 ) |
96 |
95
|
sseq2d |
⊢ ( ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = 1o ) → ( 𝐶 ⊆ ( 𝑥 ·o 𝐶 ) ↔ 𝐶 ⊆ 𝐶 ) ) |
97 |
|
ssidd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 ⊆ 𝐶 ) |
98 |
91 96 97
|
rspcedvd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∃ 𝑥 ∈ 𝐶 𝐶 ⊆ ( 𝑥 ·o 𝐶 ) ) |
99 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐶 𝐶 ⊆ ( 𝑥 ·o 𝐶 ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) ) |
100 |
98 99
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) ) |
101 |
75 100
|
eqssd |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) = 𝐶 ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 ·o 𝐶 ) = 𝐶 ) |
103 |
52 102
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
104 |
103
|
ex |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
105 |
104
|
3expia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ∅ ∈ 𝐴 → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) ) |
106 |
105
|
com23 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) ) |
107 |
106
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( ∅ ∈ 𝐴 → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
108 |
37 107
|
jaod |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
109 |
20 108
|
mpd |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
110 |
109
|
ex |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
111 |
6 110
|
jaod |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
112 |
111
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |