Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|- ( C = (/) -> ( A e. C <-> A e. (/) ) ) |
2 |
|
noel |
|- -. A e. (/) |
3 |
2
|
pm2.21i |
|- ( A e. (/) -> ( A .o B ) e. C ) |
4 |
1 3
|
syl6bi |
|- ( C = (/) -> ( A e. C -> ( A .o B ) e. C ) ) |
5 |
4
|
com12 |
|- ( A e. C -> ( C = (/) -> ( A .o B ) e. C ) ) |
6 |
5
|
adantr |
|- ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A .o B ) e. C ) ) |
7 |
|
simpl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C = ( _om ^o ( _om ^o D ) ) ) |
8 |
|
omelon |
|- _om e. On |
9 |
|
oecl |
|- ( ( _om e. On /\ D e. On ) -> ( _om ^o D ) e. On ) |
10 |
8 9
|
mpan |
|- ( D e. On -> ( _om ^o D ) e. On ) |
11 |
10 8
|
jctil |
|- ( D e. On -> ( _om e. On /\ ( _om ^o D ) e. On ) ) |
12 |
|
oecl |
|- ( ( _om e. On /\ ( _om ^o D ) e. On ) -> ( _om ^o ( _om ^o D ) ) e. On ) |
13 |
11 12
|
syl |
|- ( D e. On -> ( _om ^o ( _om ^o D ) ) e. On ) |
14 |
13
|
adantl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o ( _om ^o D ) ) e. On ) |
15 |
7 14
|
eqeltrd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C e. On ) |
16 |
|
simpll |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> A e. C ) |
17 |
|
onelon |
|- ( ( C e. On /\ A e. C ) -> A e. On ) |
18 |
15 16 17
|
syl2an2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> A e. On ) |
19 |
|
on0eqel |
|- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |
20 |
18 19
|
syl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A = (/) \/ (/) e. A ) ) |
21 |
|
oveq1 |
|- ( A = (/) -> ( A .o B ) = ( (/) .o B ) ) |
22 |
|
simpr |
|- ( ( A e. C /\ B e. C ) -> B e. C ) |
23 |
22
|
adantr |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. C ) |
24 |
|
onelon |
|- ( ( C e. On /\ B e. C ) -> B e. On ) |
25 |
15 23 24
|
syl2an2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. On ) |
26 |
|
om0r |
|- ( B e. On -> ( (/) .o B ) = (/) ) |
27 |
25 26
|
syl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( (/) .o B ) = (/) ) |
28 |
21 27
|
sylan9eqr |
|- ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> ( A .o B ) = (/) ) |
29 |
|
peano1 |
|- (/) e. _om |
30 |
|
oen0 |
|- ( ( ( _om e. On /\ ( _om ^o D ) e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o ( _om ^o D ) ) ) |
31 |
11 29 30
|
sylancl |
|- ( D e. On -> (/) e. ( _om ^o ( _om ^o D ) ) ) |
32 |
31
|
adantl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. ( _om ^o ( _om ^o D ) ) ) |
33 |
32 7
|
eleqtrrd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. C ) |
34 |
33
|
adantl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> (/) e. C ) |
35 |
34
|
adantr |
|- ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> (/) e. C ) |
36 |
28 35
|
eqeltrd |
|- ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> ( A .o B ) e. C ) |
37 |
36
|
ex |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A = (/) -> ( A .o B ) e. C ) ) |
38 |
|
simp1 |
|- ( ( A e. C /\ B e. C /\ (/) e. A ) -> A e. C ) |
39 |
15
|
adantl |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> C e. On ) |
40 |
|
simpr |
|- ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> C e. On ) |
41 |
38
|
ad2antrr |
|- ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> A e. C ) |
42 |
40 41 17
|
syl2anc |
|- ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> A e. On ) |
43 |
42
|
ex |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( C e. On -> A e. On ) ) |
44 |
39 43
|
jcai |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( C e. On /\ A e. On ) ) |
45 |
|
simpl3 |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> (/) e. A ) |
46 |
|
simpl2 |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. C ) |
47 |
|
omordi |
|- ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) |
48 |
47
|
imp |
|- ( ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) /\ B e. C ) -> ( A .o B ) e. ( A .o C ) ) |
49 |
44 45 46 48
|
syl21anc |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. ( A .o C ) ) |
50 |
|
oveq1 |
|- ( x = A -> ( x .o C ) = ( A .o C ) ) |
51 |
50
|
eliuni |
|- ( ( A e. C /\ ( A .o B ) e. ( A .o C ) ) -> ( A .o B ) e. U_ x e. C ( x .o C ) ) |
52 |
38 49 51
|
syl2an2r |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. U_ x e. C ( x .o C ) ) |
53 |
|
simpr |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> x = (/) ) |
54 |
53
|
oveq1d |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) = ( (/) .o C ) ) |
55 |
|
om0r |
|- ( C e. On -> ( (/) .o C ) = (/) ) |
56 |
15 55
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) .o C ) = (/) ) |
57 |
56
|
ad2antrr |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( (/) .o C ) = (/) ) |
58 |
54 57
|
eqtrd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) = (/) ) |
59 |
|
0ss |
|- (/) C_ C |
60 |
59
|
a1i |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> (/) C_ C ) |
61 |
58 60
|
eqsstrd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) C_ C ) |
62 |
|
id |
|- ( ( x e. C /\ (/) e. x ) -> ( x e. C /\ (/) e. x ) ) |
63 |
62
|
adantll |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x e. C /\ (/) e. x ) ) |
64 |
|
simpll |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) |
65 |
64
|
3mix3d |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( C = (/) \/ C = 2o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) |
66 |
|
omabs2 |
|- ( ( ( x e. C /\ (/) e. x ) /\ ( C = (/) \/ C = 2o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( x .o C ) = C ) |
67 |
63 65 66
|
syl2anc |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x .o C ) = C ) |
68 |
|
ssidd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> C C_ C ) |
69 |
67 68
|
eqsstrd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x .o C ) C_ C ) |
70 |
|
onelon |
|- ( ( C e. On /\ x e. C ) -> x e. On ) |
71 |
15 70
|
sylan |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> x e. On ) |
72 |
|
on0eqel |
|- ( x e. On -> ( x = (/) \/ (/) e. x ) ) |
73 |
71 72
|
syl |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> ( x = (/) \/ (/) e. x ) ) |
74 |
61 69 73
|
mpjaodan |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> ( x .o C ) C_ C ) |
75 |
74
|
iunssd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> U_ x e. C ( x .o C ) C_ C ) |
76 |
|
simpr |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> D e. On ) |
77 |
76 8
|
jctil |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om e. On /\ D e. On ) ) |
78 |
|
oen0 |
|- ( ( ( _om e. On /\ D e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o D ) ) |
79 |
77 29 78
|
sylancl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. ( _om ^o D ) ) |
80 |
77 9
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o D ) e. On ) |
81 |
|
1onn |
|- 1o e. _om |
82 |
|
ondif2 |
|- ( _om e. ( On \ 2o ) <-> ( _om e. On /\ 1o e. _om ) ) |
83 |
8 81 82
|
mpbir2an |
|- _om e. ( On \ 2o ) |
84 |
|
oeordi |
|- ( ( ( _om ^o D ) e. On /\ _om e. ( On \ 2o ) ) -> ( (/) e. ( _om ^o D ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) ) |
85 |
80 83 84
|
sylancl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) e. ( _om ^o D ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) ) |
86 |
79 85
|
mpd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) |
87 |
|
oe0 |
|- ( _om e. On -> ( _om ^o (/) ) = 1o ) |
88 |
8 87
|
ax-mp |
|- ( _om ^o (/) ) = 1o |
89 |
88
|
eqcomi |
|- 1o = ( _om ^o (/) ) |
90 |
89
|
a1i |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> 1o = ( _om ^o (/) ) ) |
91 |
86 90 7
|
3eltr4d |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> 1o e. C ) |
92 |
|
oveq1 |
|- ( x = 1o -> ( x .o C ) = ( 1o .o C ) ) |
93 |
|
om1r |
|- ( C e. On -> ( 1o .o C ) = C ) |
94 |
15 93
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( 1o .o C ) = C ) |
95 |
92 94
|
sylan9eqr |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x = 1o ) -> ( x .o C ) = C ) |
96 |
95
|
sseq2d |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x = 1o ) -> ( C C_ ( x .o C ) <-> C C_ C ) ) |
97 |
|
ssidd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C C_ C ) |
98 |
91 96 97
|
rspcedvd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> E. x e. C C C_ ( x .o C ) ) |
99 |
|
ssiun |
|- ( E. x e. C C C_ ( x .o C ) -> C C_ U_ x e. C ( x .o C ) ) |
100 |
98 99
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C C_ U_ x e. C ( x .o C ) ) |
101 |
75 100
|
eqssd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> U_ x e. C ( x .o C ) = C ) |
102 |
101
|
adantl |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> U_ x e. C ( x .o C ) = C ) |
103 |
52 102
|
eleqtrd |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) |
104 |
103
|
ex |
|- ( ( A e. C /\ B e. C /\ (/) e. A ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) |
105 |
104
|
3expia |
|- ( ( A e. C /\ B e. C ) -> ( (/) e. A -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) ) |
106 |
105
|
com23 |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) e. A -> ( A .o B ) e. C ) ) ) |
107 |
106
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( (/) e. A -> ( A .o B ) e. C ) ) |
108 |
37 107
|
jaod |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( ( A = (/) \/ (/) e. A ) -> ( A .o B ) e. C ) ) |
109 |
20 108
|
mpd |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) |
110 |
109
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) |
111 |
6 110
|
jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) ) |
112 |
111
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |