| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
|- ( C = (/) -> ( A e. C <-> A e. (/) ) ) |
| 2 |
|
noel |
|- -. A e. (/) |
| 3 |
2
|
pm2.21i |
|- ( A e. (/) -> ( A .o B ) e. C ) |
| 4 |
1 3
|
biimtrdi |
|- ( C = (/) -> ( A e. C -> ( A .o B ) e. C ) ) |
| 5 |
4
|
com12 |
|- ( A e. C -> ( C = (/) -> ( A .o B ) e. C ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A .o B ) e. C ) ) |
| 7 |
|
simpl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C = ( _om ^o ( _om ^o D ) ) ) |
| 8 |
|
omelon |
|- _om e. On |
| 9 |
|
oecl |
|- ( ( _om e. On /\ D e. On ) -> ( _om ^o D ) e. On ) |
| 10 |
8 9
|
mpan |
|- ( D e. On -> ( _om ^o D ) e. On ) |
| 11 |
10 8
|
jctil |
|- ( D e. On -> ( _om e. On /\ ( _om ^o D ) e. On ) ) |
| 12 |
|
oecl |
|- ( ( _om e. On /\ ( _om ^o D ) e. On ) -> ( _om ^o ( _om ^o D ) ) e. On ) |
| 13 |
11 12
|
syl |
|- ( D e. On -> ( _om ^o ( _om ^o D ) ) e. On ) |
| 14 |
13
|
adantl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o ( _om ^o D ) ) e. On ) |
| 15 |
7 14
|
eqeltrd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C e. On ) |
| 16 |
|
simpll |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> A e. C ) |
| 17 |
|
onelon |
|- ( ( C e. On /\ A e. C ) -> A e. On ) |
| 18 |
15 16 17
|
syl2an2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> A e. On ) |
| 19 |
|
on0eqel |
|- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |
| 20 |
18 19
|
syl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A = (/) \/ (/) e. A ) ) |
| 21 |
|
oveq1 |
|- ( A = (/) -> ( A .o B ) = ( (/) .o B ) ) |
| 22 |
|
simpr |
|- ( ( A e. C /\ B e. C ) -> B e. C ) |
| 23 |
22
|
adantr |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. C ) |
| 24 |
|
onelon |
|- ( ( C e. On /\ B e. C ) -> B e. On ) |
| 25 |
15 23 24
|
syl2an2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. On ) |
| 26 |
|
om0r |
|- ( B e. On -> ( (/) .o B ) = (/) ) |
| 27 |
25 26
|
syl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( (/) .o B ) = (/) ) |
| 28 |
21 27
|
sylan9eqr |
|- ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> ( A .o B ) = (/) ) |
| 29 |
|
peano1 |
|- (/) e. _om |
| 30 |
|
oen0 |
|- ( ( ( _om e. On /\ ( _om ^o D ) e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o ( _om ^o D ) ) ) |
| 31 |
11 29 30
|
sylancl |
|- ( D e. On -> (/) e. ( _om ^o ( _om ^o D ) ) ) |
| 32 |
31
|
adantl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. ( _om ^o ( _om ^o D ) ) ) |
| 33 |
32 7
|
eleqtrrd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. C ) |
| 34 |
33
|
adantl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> (/) e. C ) |
| 35 |
34
|
adantr |
|- ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> (/) e. C ) |
| 36 |
28 35
|
eqeltrd |
|- ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> ( A .o B ) e. C ) |
| 37 |
36
|
ex |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A = (/) -> ( A .o B ) e. C ) ) |
| 38 |
|
simp1 |
|- ( ( A e. C /\ B e. C /\ (/) e. A ) -> A e. C ) |
| 39 |
15
|
adantl |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> C e. On ) |
| 40 |
|
simpr |
|- ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> C e. On ) |
| 41 |
38
|
ad2antrr |
|- ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> A e. C ) |
| 42 |
40 41 17
|
syl2anc |
|- ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> A e. On ) |
| 43 |
42
|
ex |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( C e. On -> A e. On ) ) |
| 44 |
39 43
|
jcai |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( C e. On /\ A e. On ) ) |
| 45 |
|
simpl3 |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> (/) e. A ) |
| 46 |
|
simpl2 |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. C ) |
| 47 |
|
omordi |
|- ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) |
| 48 |
47
|
imp |
|- ( ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) /\ B e. C ) -> ( A .o B ) e. ( A .o C ) ) |
| 49 |
44 45 46 48
|
syl21anc |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. ( A .o C ) ) |
| 50 |
|
oveq1 |
|- ( x = A -> ( x .o C ) = ( A .o C ) ) |
| 51 |
50
|
eliuni |
|- ( ( A e. C /\ ( A .o B ) e. ( A .o C ) ) -> ( A .o B ) e. U_ x e. C ( x .o C ) ) |
| 52 |
38 49 51
|
syl2an2r |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. U_ x e. C ( x .o C ) ) |
| 53 |
|
simpr |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> x = (/) ) |
| 54 |
53
|
oveq1d |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) = ( (/) .o C ) ) |
| 55 |
|
om0r |
|- ( C e. On -> ( (/) .o C ) = (/) ) |
| 56 |
15 55
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) .o C ) = (/) ) |
| 57 |
56
|
ad2antrr |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( (/) .o C ) = (/) ) |
| 58 |
54 57
|
eqtrd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) = (/) ) |
| 59 |
|
0ss |
|- (/) C_ C |
| 60 |
59
|
a1i |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> (/) C_ C ) |
| 61 |
58 60
|
eqsstrd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) C_ C ) |
| 62 |
|
id |
|- ( ( x e. C /\ (/) e. x ) -> ( x e. C /\ (/) e. x ) ) |
| 63 |
62
|
adantll |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x e. C /\ (/) e. x ) ) |
| 64 |
|
simpll |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) |
| 65 |
64
|
3mix3d |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( C = (/) \/ C = 2o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) |
| 66 |
|
omabs2 |
|- ( ( ( x e. C /\ (/) e. x ) /\ ( C = (/) \/ C = 2o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( x .o C ) = C ) |
| 67 |
63 65 66
|
syl2anc |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x .o C ) = C ) |
| 68 |
|
ssidd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> C C_ C ) |
| 69 |
67 68
|
eqsstrd |
|- ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x .o C ) C_ C ) |
| 70 |
|
onelon |
|- ( ( C e. On /\ x e. C ) -> x e. On ) |
| 71 |
15 70
|
sylan |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> x e. On ) |
| 72 |
|
on0eqel |
|- ( x e. On -> ( x = (/) \/ (/) e. x ) ) |
| 73 |
71 72
|
syl |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> ( x = (/) \/ (/) e. x ) ) |
| 74 |
61 69 73
|
mpjaodan |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> ( x .o C ) C_ C ) |
| 75 |
74
|
iunssd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> U_ x e. C ( x .o C ) C_ C ) |
| 76 |
|
simpr |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> D e. On ) |
| 77 |
76 8
|
jctil |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om e. On /\ D e. On ) ) |
| 78 |
|
oen0 |
|- ( ( ( _om e. On /\ D e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o D ) ) |
| 79 |
77 29 78
|
sylancl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. ( _om ^o D ) ) |
| 80 |
77 9
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o D ) e. On ) |
| 81 |
|
1onn |
|- 1o e. _om |
| 82 |
|
ondif2 |
|- ( _om e. ( On \ 2o ) <-> ( _om e. On /\ 1o e. _om ) ) |
| 83 |
8 81 82
|
mpbir2an |
|- _om e. ( On \ 2o ) |
| 84 |
|
oeordi |
|- ( ( ( _om ^o D ) e. On /\ _om e. ( On \ 2o ) ) -> ( (/) e. ( _om ^o D ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) ) |
| 85 |
80 83 84
|
sylancl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) e. ( _om ^o D ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) ) |
| 86 |
79 85
|
mpd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) |
| 87 |
|
oe0 |
|- ( _om e. On -> ( _om ^o (/) ) = 1o ) |
| 88 |
8 87
|
ax-mp |
|- ( _om ^o (/) ) = 1o |
| 89 |
88
|
eqcomi |
|- 1o = ( _om ^o (/) ) |
| 90 |
89
|
a1i |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> 1o = ( _om ^o (/) ) ) |
| 91 |
86 90 7
|
3eltr4d |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> 1o e. C ) |
| 92 |
|
oveq1 |
|- ( x = 1o -> ( x .o C ) = ( 1o .o C ) ) |
| 93 |
|
om1r |
|- ( C e. On -> ( 1o .o C ) = C ) |
| 94 |
15 93
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( 1o .o C ) = C ) |
| 95 |
92 94
|
sylan9eqr |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x = 1o ) -> ( x .o C ) = C ) |
| 96 |
95
|
sseq2d |
|- ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x = 1o ) -> ( C C_ ( x .o C ) <-> C C_ C ) ) |
| 97 |
|
ssidd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C C_ C ) |
| 98 |
91 96 97
|
rspcedvd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> E. x e. C C C_ ( x .o C ) ) |
| 99 |
|
ssiun |
|- ( E. x e. C C C_ ( x .o C ) -> C C_ U_ x e. C ( x .o C ) ) |
| 100 |
98 99
|
syl |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C C_ U_ x e. C ( x .o C ) ) |
| 101 |
75 100
|
eqssd |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> U_ x e. C ( x .o C ) = C ) |
| 102 |
101
|
adantl |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> U_ x e. C ( x .o C ) = C ) |
| 103 |
52 102
|
eleqtrd |
|- ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) |
| 104 |
103
|
ex |
|- ( ( A e. C /\ B e. C /\ (/) e. A ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) |
| 105 |
104
|
3expia |
|- ( ( A e. C /\ B e. C ) -> ( (/) e. A -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) ) |
| 106 |
105
|
com23 |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) e. A -> ( A .o B ) e. C ) ) ) |
| 107 |
106
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( (/) e. A -> ( A .o B ) e. C ) ) |
| 108 |
37 107
|
jaod |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( ( A = (/) \/ (/) e. A ) -> ( A .o B ) e. C ) ) |
| 109 |
20 108
|
mpd |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) |
| 110 |
109
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) |
| 111 |
6 110
|
jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) ) |
| 112 |
111
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |