| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 |  |-  ( C = (/) -> ( A e. C <-> A e. (/) ) ) | 
						
							| 2 |  | noel |  |-  -. A e. (/) | 
						
							| 3 | 2 | pm2.21i |  |-  ( A e. (/) -> ( A .o B ) e. C ) | 
						
							| 4 | 1 3 | biimtrdi |  |-  ( C = (/) -> ( A e. C -> ( A .o B ) e. C ) ) | 
						
							| 5 | 4 | com12 |  |-  ( A e. C -> ( C = (/) -> ( A .o B ) e. C ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A .o B ) e. C ) ) | 
						
							| 7 |  | simpl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C = ( _om ^o ( _om ^o D ) ) ) | 
						
							| 8 |  | omelon |  |-  _om e. On | 
						
							| 9 |  | oecl |  |-  ( ( _om e. On /\ D e. On ) -> ( _om ^o D ) e. On ) | 
						
							| 10 | 8 9 | mpan |  |-  ( D e. On -> ( _om ^o D ) e. On ) | 
						
							| 11 | 10 8 | jctil |  |-  ( D e. On -> ( _om e. On /\ ( _om ^o D ) e. On ) ) | 
						
							| 12 |  | oecl |  |-  ( ( _om e. On /\ ( _om ^o D ) e. On ) -> ( _om ^o ( _om ^o D ) ) e. On ) | 
						
							| 13 | 11 12 | syl |  |-  ( D e. On -> ( _om ^o ( _om ^o D ) ) e. On ) | 
						
							| 14 | 13 | adantl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o ( _om ^o D ) ) e. On ) | 
						
							| 15 | 7 14 | eqeltrd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C e. On ) | 
						
							| 16 |  | simpll |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> A e. C ) | 
						
							| 17 |  | onelon |  |-  ( ( C e. On /\ A e. C ) -> A e. On ) | 
						
							| 18 | 15 16 17 | syl2an2 |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> A e. On ) | 
						
							| 19 |  | on0eqel |  |-  ( A e. On -> ( A = (/) \/ (/) e. A ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A = (/) \/ (/) e. A ) ) | 
						
							| 21 |  | oveq1 |  |-  ( A = (/) -> ( A .o B ) = ( (/) .o B ) ) | 
						
							| 22 |  | simpr |  |-  ( ( A e. C /\ B e. C ) -> B e. C ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. C ) | 
						
							| 24 |  | onelon |  |-  ( ( C e. On /\ B e. C ) -> B e. On ) | 
						
							| 25 | 15 23 24 | syl2an2 |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. On ) | 
						
							| 26 |  | om0r |  |-  ( B e. On -> ( (/) .o B ) = (/) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( (/) .o B ) = (/) ) | 
						
							| 28 | 21 27 | sylan9eqr |  |-  ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> ( A .o B ) = (/) ) | 
						
							| 29 |  | peano1 |  |-  (/) e. _om | 
						
							| 30 |  | oen0 |  |-  ( ( ( _om e. On /\ ( _om ^o D ) e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o ( _om ^o D ) ) ) | 
						
							| 31 | 11 29 30 | sylancl |  |-  ( D e. On -> (/) e. ( _om ^o ( _om ^o D ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. ( _om ^o ( _om ^o D ) ) ) | 
						
							| 33 | 32 7 | eleqtrrd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. C ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> (/) e. C ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> (/) e. C ) | 
						
							| 36 | 28 35 | eqeltrd |  |-  ( ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ A = (/) ) -> ( A .o B ) e. C ) | 
						
							| 37 | 36 | ex |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A = (/) -> ( A .o B ) e. C ) ) | 
						
							| 38 |  | simp1 |  |-  ( ( A e. C /\ B e. C /\ (/) e. A ) -> A e. C ) | 
						
							| 39 | 15 | adantl |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> C e. On ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> C e. On ) | 
						
							| 41 | 38 | ad2antrr |  |-  ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> A e. C ) | 
						
							| 42 | 40 41 17 | syl2anc |  |-  ( ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) /\ C e. On ) -> A e. On ) | 
						
							| 43 | 42 | ex |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( C e. On -> A e. On ) ) | 
						
							| 44 | 39 43 | jcai |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( C e. On /\ A e. On ) ) | 
						
							| 45 |  | simpl3 |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> (/) e. A ) | 
						
							| 46 |  | simpl2 |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> B e. C ) | 
						
							| 47 |  | omordi |  |-  ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) /\ B e. C ) -> ( A .o B ) e. ( A .o C ) ) | 
						
							| 49 | 44 45 46 48 | syl21anc |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. ( A .o C ) ) | 
						
							| 50 |  | oveq1 |  |-  ( x = A -> ( x .o C ) = ( A .o C ) ) | 
						
							| 51 | 50 | eliuni |  |-  ( ( A e. C /\ ( A .o B ) e. ( A .o C ) ) -> ( A .o B ) e. U_ x e. C ( x .o C ) ) | 
						
							| 52 | 38 49 51 | syl2an2r |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. U_ x e. C ( x .o C ) ) | 
						
							| 53 |  | simpr |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> x = (/) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) = ( (/) .o C ) ) | 
						
							| 55 |  | om0r |  |-  ( C e. On -> ( (/) .o C ) = (/) ) | 
						
							| 56 | 15 55 | syl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) .o C ) = (/) ) | 
						
							| 57 | 56 | ad2antrr |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( (/) .o C ) = (/) ) | 
						
							| 58 | 54 57 | eqtrd |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) = (/) ) | 
						
							| 59 |  | 0ss |  |-  (/) C_ C | 
						
							| 60 | 59 | a1i |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> (/) C_ C ) | 
						
							| 61 | 58 60 | eqsstrd |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ x = (/) ) -> ( x .o C ) C_ C ) | 
						
							| 62 |  | id |  |-  ( ( x e. C /\ (/) e. x ) -> ( x e. C /\ (/) e. x ) ) | 
						
							| 63 | 62 | adantll |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x e. C /\ (/) e. x ) ) | 
						
							| 64 |  | simpll |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) | 
						
							| 65 | 64 | 3mix3d |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( C = (/) \/ C = 2o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) | 
						
							| 66 |  | omabs2 |  |-  ( ( ( x e. C /\ (/) e. x ) /\ ( C = (/) \/ C = 2o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( x .o C ) = C ) | 
						
							| 67 | 63 65 66 | syl2anc |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x .o C ) = C ) | 
						
							| 68 |  | ssidd |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> C C_ C ) | 
						
							| 69 | 67 68 | eqsstrd |  |-  ( ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) /\ (/) e. x ) -> ( x .o C ) C_ C ) | 
						
							| 70 |  | onelon |  |-  ( ( C e. On /\ x e. C ) -> x e. On ) | 
						
							| 71 | 15 70 | sylan |  |-  ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> x e. On ) | 
						
							| 72 |  | on0eqel |  |-  ( x e. On -> ( x = (/) \/ (/) e. x ) ) | 
						
							| 73 | 71 72 | syl |  |-  ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> ( x = (/) \/ (/) e. x ) ) | 
						
							| 74 | 61 69 73 | mpjaodan |  |-  ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x e. C ) -> ( x .o C ) C_ C ) | 
						
							| 75 | 74 | iunssd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> U_ x e. C ( x .o C ) C_ C ) | 
						
							| 76 |  | simpr |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> D e. On ) | 
						
							| 77 | 76 8 | jctil |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om e. On /\ D e. On ) ) | 
						
							| 78 |  | oen0 |  |-  ( ( ( _om e. On /\ D e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o D ) ) | 
						
							| 79 | 77 29 78 | sylancl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> (/) e. ( _om ^o D ) ) | 
						
							| 80 | 77 9 | syl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o D ) e. On ) | 
						
							| 81 |  | 1onn |  |-  1o e. _om | 
						
							| 82 |  | ondif2 |  |-  ( _om e. ( On \ 2o ) <-> ( _om e. On /\ 1o e. _om ) ) | 
						
							| 83 | 8 81 82 | mpbir2an |  |-  _om e. ( On \ 2o ) | 
						
							| 84 |  | oeordi |  |-  ( ( ( _om ^o D ) e. On /\ _om e. ( On \ 2o ) ) -> ( (/) e. ( _om ^o D ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) ) | 
						
							| 85 | 80 83 84 | sylancl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) e. ( _om ^o D ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) ) | 
						
							| 86 | 79 85 | mpd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( _om ^o (/) ) e. ( _om ^o ( _om ^o D ) ) ) | 
						
							| 87 |  | oe0 |  |-  ( _om e. On -> ( _om ^o (/) ) = 1o ) | 
						
							| 88 | 8 87 | ax-mp |  |-  ( _om ^o (/) ) = 1o | 
						
							| 89 | 88 | eqcomi |  |-  1o = ( _om ^o (/) ) | 
						
							| 90 | 89 | a1i |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> 1o = ( _om ^o (/) ) ) | 
						
							| 91 | 86 90 7 | 3eltr4d |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> 1o e. C ) | 
						
							| 92 |  | oveq1 |  |-  ( x = 1o -> ( x .o C ) = ( 1o .o C ) ) | 
						
							| 93 |  | om1r |  |-  ( C e. On -> ( 1o .o C ) = C ) | 
						
							| 94 | 15 93 | syl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( 1o .o C ) = C ) | 
						
							| 95 | 92 94 | sylan9eqr |  |-  ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x = 1o ) -> ( x .o C ) = C ) | 
						
							| 96 | 95 | sseq2d |  |-  ( ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) /\ x = 1o ) -> ( C C_ ( x .o C ) <-> C C_ C ) ) | 
						
							| 97 |  | ssidd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C C_ C ) | 
						
							| 98 | 91 96 97 | rspcedvd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> E. x e. C C C_ ( x .o C ) ) | 
						
							| 99 |  | ssiun |  |-  ( E. x e. C C C_ ( x .o C ) -> C C_ U_ x e. C ( x .o C ) ) | 
						
							| 100 | 98 99 | syl |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> C C_ U_ x e. C ( x .o C ) ) | 
						
							| 101 | 75 100 | eqssd |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> U_ x e. C ( x .o C ) = C ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> U_ x e. C ( x .o C ) = C ) | 
						
							| 103 | 52 102 | eleqtrd |  |-  ( ( ( A e. C /\ B e. C /\ (/) e. A ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) | 
						
							| 104 | 103 | ex |  |-  ( ( A e. C /\ B e. C /\ (/) e. A ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) | 
						
							| 105 | 104 | 3expia |  |-  ( ( A e. C /\ B e. C ) -> ( (/) e. A -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) ) | 
						
							| 106 | 105 | com23 |  |-  ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( (/) e. A -> ( A .o B ) e. C ) ) ) | 
						
							| 107 | 106 | imp |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( (/) e. A -> ( A .o B ) e. C ) ) | 
						
							| 108 | 37 107 | jaod |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( ( A = (/) \/ (/) e. A ) -> ( A .o B ) e. C ) ) | 
						
							| 109 | 20 108 | mpd |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) | 
						
							| 110 | 109 | ex |  |-  ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) | 
						
							| 111 | 6 110 | jaod |  |-  ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) ) | 
						
							| 112 | 111 | imp |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |