| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eltpi |
|- ( C e. { (/) , 1o , 2o } -> ( C = (/) \/ C = 1o \/ C = 2o ) ) |
| 2 |
|
df-3o |
|- 3o = suc 2o |
| 3 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 4 |
3
|
uneq1i |
|- ( 2o u. { 2o } ) = ( { (/) , 1o } u. { 2o } ) |
| 5 |
|
df-suc |
|- suc 2o = ( 2o u. { 2o } ) |
| 6 |
|
df-tp |
|- { (/) , 1o , 2o } = ( { (/) , 1o } u. { 2o } ) |
| 7 |
4 5 6
|
3eqtr4i |
|- suc 2o = { (/) , 1o , 2o } |
| 8 |
2 7
|
eqtri |
|- 3o = { (/) , 1o , 2o } |
| 9 |
1 8
|
eleq2s |
|- ( C e. 3o -> ( C = (/) \/ C = 1o \/ C = 2o ) ) |
| 10 |
|
orc |
|- ( C = (/) -> ( C = (/) \/ ( C = ( _om ^o ( _om ^o C ) ) /\ C e. On ) ) ) |
| 11 |
|
omcl2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o C ) ) /\ C e. On ) ) ) -> ( A .o B ) e. C ) |
| 12 |
10 11
|
sylan2 |
|- ( ( ( A e. C /\ B e. C ) /\ C = (/) ) -> ( A .o B ) e. C ) |
| 13 |
12
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A .o B ) e. C ) ) |
| 14 |
|
el1o |
|- ( A e. 1o <-> A = (/) ) |
| 15 |
|
el1o |
|- ( B e. 1o <-> B = (/) ) |
| 16 |
|
oveq12 |
|- ( ( A = (/) /\ B = (/) ) -> ( A .o B ) = ( (/) .o (/) ) ) |
| 17 |
|
0elon |
|- (/) e. On |
| 18 |
|
om0 |
|- ( (/) e. On -> ( (/) .o (/) ) = (/) ) |
| 19 |
17 18
|
ax-mp |
|- ( (/) .o (/) ) = (/) |
| 20 |
|
0lt1o |
|- (/) e. 1o |
| 21 |
19 20
|
eqeltri |
|- ( (/) .o (/) ) e. 1o |
| 22 |
16 21
|
eqeltrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A .o B ) e. 1o ) |
| 23 |
14 15 22
|
syl2anb |
|- ( ( A e. 1o /\ B e. 1o ) -> ( A .o B ) e. 1o ) |
| 24 |
23
|
a1i |
|- ( C = 1o -> ( ( A e. 1o /\ B e. 1o ) -> ( A .o B ) e. 1o ) ) |
| 25 |
|
eleq2 |
|- ( C = 1o -> ( A e. C <-> A e. 1o ) ) |
| 26 |
|
eleq2 |
|- ( C = 1o -> ( B e. C <-> B e. 1o ) ) |
| 27 |
25 26
|
anbi12d |
|- ( C = 1o -> ( ( A e. C /\ B e. C ) <-> ( A e. 1o /\ B e. 1o ) ) ) |
| 28 |
|
eleq2 |
|- ( C = 1o -> ( ( A .o B ) e. C <-> ( A .o B ) e. 1o ) ) |
| 29 |
24 27 28
|
3imtr4d |
|- ( C = 1o -> ( ( A e. C /\ B e. C ) -> ( A .o B ) e. C ) ) |
| 30 |
29
|
com12 |
|- ( ( A e. C /\ B e. C ) -> ( C = 1o -> ( A .o B ) e. C ) ) |
| 31 |
|
elpri |
|- ( A e. { (/) , 1o } -> ( A = (/) \/ A = 1o ) ) |
| 32 |
31 3
|
eleq2s |
|- ( A e. 2o -> ( A = (/) \/ A = 1o ) ) |
| 33 |
|
elpri |
|- ( B e. { (/) , 1o } -> ( B = (/) \/ B = 1o ) ) |
| 34 |
33 3
|
eleq2s |
|- ( B e. 2o -> ( B = (/) \/ B = 1o ) ) |
| 35 |
|
0ex |
|- (/) e. _V |
| 36 |
35
|
prid1 |
|- (/) e. { (/) , 1o } |
| 37 |
36 19 3
|
3eltr4i |
|- ( (/) .o (/) ) e. 2o |
| 38 |
16 37
|
eqeltrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A .o B ) e. 2o ) |
| 39 |
|
oveq12 |
|- ( ( A = 1o /\ B = (/) ) -> ( A .o B ) = ( 1o .o (/) ) ) |
| 40 |
|
1on |
|- 1o e. On |
| 41 |
|
om0 |
|- ( 1o e. On -> ( 1o .o (/) ) = (/) ) |
| 42 |
40 41
|
ax-mp |
|- ( 1o .o (/) ) = (/) |
| 43 |
36 42 3
|
3eltr4i |
|- ( 1o .o (/) ) e. 2o |
| 44 |
39 43
|
eqeltrdi |
|- ( ( A = 1o /\ B = (/) ) -> ( A .o B ) e. 2o ) |
| 45 |
|
oveq12 |
|- ( ( A = (/) /\ B = 1o ) -> ( A .o B ) = ( (/) .o 1o ) ) |
| 46 |
|
om0r |
|- ( 1o e. On -> ( (/) .o 1o ) = (/) ) |
| 47 |
40 46
|
ax-mp |
|- ( (/) .o 1o ) = (/) |
| 48 |
36 47 3
|
3eltr4i |
|- ( (/) .o 1o ) e. 2o |
| 49 |
45 48
|
eqeltrdi |
|- ( ( A = (/) /\ B = 1o ) -> ( A .o B ) e. 2o ) |
| 50 |
|
oveq12 |
|- ( ( A = 1o /\ B = 1o ) -> ( A .o B ) = ( 1o .o 1o ) ) |
| 51 |
|
1oex |
|- 1o e. _V |
| 52 |
51
|
prid2 |
|- 1o e. { (/) , 1o } |
| 53 |
|
om1 |
|- ( 1o e. On -> ( 1o .o 1o ) = 1o ) |
| 54 |
40 53
|
ax-mp |
|- ( 1o .o 1o ) = 1o |
| 55 |
52 54 3
|
3eltr4i |
|- ( 1o .o 1o ) e. 2o |
| 56 |
50 55
|
eqeltrdi |
|- ( ( A = 1o /\ B = 1o ) -> ( A .o B ) e. 2o ) |
| 57 |
38 44 49 56
|
ccase |
|- ( ( ( A = (/) \/ A = 1o ) /\ ( B = (/) \/ B = 1o ) ) -> ( A .o B ) e. 2o ) |
| 58 |
32 34 57
|
syl2an |
|- ( ( A e. 2o /\ B e. 2o ) -> ( A .o B ) e. 2o ) |
| 59 |
58
|
a1i |
|- ( C = 2o -> ( ( A e. 2o /\ B e. 2o ) -> ( A .o B ) e. 2o ) ) |
| 60 |
|
eleq2 |
|- ( C = 2o -> ( A e. C <-> A e. 2o ) ) |
| 61 |
|
eleq2 |
|- ( C = 2o -> ( B e. C <-> B e. 2o ) ) |
| 62 |
60 61
|
anbi12d |
|- ( C = 2o -> ( ( A e. C /\ B e. C ) <-> ( A e. 2o /\ B e. 2o ) ) ) |
| 63 |
|
eleq2 |
|- ( C = 2o -> ( ( A .o B ) e. C <-> ( A .o B ) e. 2o ) ) |
| 64 |
59 62 63
|
3imtr4d |
|- ( C = 2o -> ( ( A e. C /\ B e. C ) -> ( A .o B ) e. C ) ) |
| 65 |
64
|
com12 |
|- ( ( A e. C /\ B e. C ) -> ( C = 2o -> ( A .o B ) e. C ) ) |
| 66 |
13 30 65
|
3jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ C = 1o \/ C = 2o ) -> ( A .o B ) e. C ) ) |
| 67 |
9 66
|
syl5 |
|- ( ( A e. C /\ B e. C ) -> ( C e. 3o -> ( A .o B ) e. C ) ) |
| 68 |
|
olc |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) |
| 69 |
|
omcl2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |
| 70 |
68 69
|
sylan2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) |
| 71 |
70
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) |
| 72 |
67 71
|
jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C e. 3o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) ) |
| 73 |
72
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C e. 3o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |