Step |
Hyp |
Ref |
Expression |
1 |
|
eltpi |
|- ( C e. { (/) , 1o , 2o } -> ( C = (/) \/ C = 1o \/ C = 2o ) ) |
2 |
|
df-3o |
|- 3o = suc 2o |
3 |
|
df2o3 |
|- 2o = { (/) , 1o } |
4 |
3
|
uneq1i |
|- ( 2o u. { 2o } ) = ( { (/) , 1o } u. { 2o } ) |
5 |
|
df-suc |
|- suc 2o = ( 2o u. { 2o } ) |
6 |
|
df-tp |
|- { (/) , 1o , 2o } = ( { (/) , 1o } u. { 2o } ) |
7 |
4 5 6
|
3eqtr4i |
|- suc 2o = { (/) , 1o , 2o } |
8 |
2 7
|
eqtri |
|- 3o = { (/) , 1o , 2o } |
9 |
1 8
|
eleq2s |
|- ( C e. 3o -> ( C = (/) \/ C = 1o \/ C = 2o ) ) |
10 |
|
orc |
|- ( C = (/) -> ( C = (/) \/ ( C = ( _om ^o ( _om ^o C ) ) /\ C e. On ) ) ) |
11 |
|
omcl2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o C ) ) /\ C e. On ) ) ) -> ( A .o B ) e. C ) |
12 |
10 11
|
sylan2 |
|- ( ( ( A e. C /\ B e. C ) /\ C = (/) ) -> ( A .o B ) e. C ) |
13 |
12
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A .o B ) e. C ) ) |
14 |
|
el1o |
|- ( A e. 1o <-> A = (/) ) |
15 |
|
el1o |
|- ( B e. 1o <-> B = (/) ) |
16 |
|
oveq12 |
|- ( ( A = (/) /\ B = (/) ) -> ( A .o B ) = ( (/) .o (/) ) ) |
17 |
|
0elon |
|- (/) e. On |
18 |
|
om0 |
|- ( (/) e. On -> ( (/) .o (/) ) = (/) ) |
19 |
17 18
|
ax-mp |
|- ( (/) .o (/) ) = (/) |
20 |
|
0lt1o |
|- (/) e. 1o |
21 |
19 20
|
eqeltri |
|- ( (/) .o (/) ) e. 1o |
22 |
16 21
|
eqeltrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A .o B ) e. 1o ) |
23 |
14 15 22
|
syl2anb |
|- ( ( A e. 1o /\ B e. 1o ) -> ( A .o B ) e. 1o ) |
24 |
23
|
a1i |
|- ( C = 1o -> ( ( A e. 1o /\ B e. 1o ) -> ( A .o B ) e. 1o ) ) |
25 |
|
eleq2 |
|- ( C = 1o -> ( A e. C <-> A e. 1o ) ) |
26 |
|
eleq2 |
|- ( C = 1o -> ( B e. C <-> B e. 1o ) ) |
27 |
25 26
|
anbi12d |
|- ( C = 1o -> ( ( A e. C /\ B e. C ) <-> ( A e. 1o /\ B e. 1o ) ) ) |
28 |
|
eleq2 |
|- ( C = 1o -> ( ( A .o B ) e. C <-> ( A .o B ) e. 1o ) ) |
29 |
24 27 28
|
3imtr4d |
|- ( C = 1o -> ( ( A e. C /\ B e. C ) -> ( A .o B ) e. C ) ) |
30 |
29
|
com12 |
|- ( ( A e. C /\ B e. C ) -> ( C = 1o -> ( A .o B ) e. C ) ) |
31 |
|
elpri |
|- ( A e. { (/) , 1o } -> ( A = (/) \/ A = 1o ) ) |
32 |
31 3
|
eleq2s |
|- ( A e. 2o -> ( A = (/) \/ A = 1o ) ) |
33 |
|
elpri |
|- ( B e. { (/) , 1o } -> ( B = (/) \/ B = 1o ) ) |
34 |
33 3
|
eleq2s |
|- ( B e. 2o -> ( B = (/) \/ B = 1o ) ) |
35 |
|
0ex |
|- (/) e. _V |
36 |
35
|
prid1 |
|- (/) e. { (/) , 1o } |
37 |
36 19 3
|
3eltr4i |
|- ( (/) .o (/) ) e. 2o |
38 |
16 37
|
eqeltrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A .o B ) e. 2o ) |
39 |
|
oveq12 |
|- ( ( A = 1o /\ B = (/) ) -> ( A .o B ) = ( 1o .o (/) ) ) |
40 |
|
1on |
|- 1o e. On |
41 |
|
om0 |
|- ( 1o e. On -> ( 1o .o (/) ) = (/) ) |
42 |
40 41
|
ax-mp |
|- ( 1o .o (/) ) = (/) |
43 |
36 42 3
|
3eltr4i |
|- ( 1o .o (/) ) e. 2o |
44 |
39 43
|
eqeltrdi |
|- ( ( A = 1o /\ B = (/) ) -> ( A .o B ) e. 2o ) |
45 |
|
oveq12 |
|- ( ( A = (/) /\ B = 1o ) -> ( A .o B ) = ( (/) .o 1o ) ) |
46 |
|
om0r |
|- ( 1o e. On -> ( (/) .o 1o ) = (/) ) |
47 |
40 46
|
ax-mp |
|- ( (/) .o 1o ) = (/) |
48 |
36 47 3
|
3eltr4i |
|- ( (/) .o 1o ) e. 2o |
49 |
45 48
|
eqeltrdi |
|- ( ( A = (/) /\ B = 1o ) -> ( A .o B ) e. 2o ) |
50 |
|
oveq12 |
|- ( ( A = 1o /\ B = 1o ) -> ( A .o B ) = ( 1o .o 1o ) ) |
51 |
|
1oex |
|- 1o e. _V |
52 |
51
|
prid2 |
|- 1o e. { (/) , 1o } |
53 |
|
om1 |
|- ( 1o e. On -> ( 1o .o 1o ) = 1o ) |
54 |
40 53
|
ax-mp |
|- ( 1o .o 1o ) = 1o |
55 |
52 54 3
|
3eltr4i |
|- ( 1o .o 1o ) e. 2o |
56 |
50 55
|
eqeltrdi |
|- ( ( A = 1o /\ B = 1o ) -> ( A .o B ) e. 2o ) |
57 |
38 44 49 56
|
ccase |
|- ( ( ( A = (/) \/ A = 1o ) /\ ( B = (/) \/ B = 1o ) ) -> ( A .o B ) e. 2o ) |
58 |
32 34 57
|
syl2an |
|- ( ( A e. 2o /\ B e. 2o ) -> ( A .o B ) e. 2o ) |
59 |
58
|
a1i |
|- ( C = 2o -> ( ( A e. 2o /\ B e. 2o ) -> ( A .o B ) e. 2o ) ) |
60 |
|
eleq2 |
|- ( C = 2o -> ( A e. C <-> A e. 2o ) ) |
61 |
|
eleq2 |
|- ( C = 2o -> ( B e. C <-> B e. 2o ) ) |
62 |
60 61
|
anbi12d |
|- ( C = 2o -> ( ( A e. C /\ B e. C ) <-> ( A e. 2o /\ B e. 2o ) ) ) |
63 |
|
eleq2 |
|- ( C = 2o -> ( ( A .o B ) e. C <-> ( A .o B ) e. 2o ) ) |
64 |
59 62 63
|
3imtr4d |
|- ( C = 2o -> ( ( A e. C /\ B e. C ) -> ( A .o B ) e. C ) ) |
65 |
64
|
com12 |
|- ( ( A e. C /\ B e. C ) -> ( C = 2o -> ( A .o B ) e. C ) ) |
66 |
13 30 65
|
3jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ C = 1o \/ C = 2o ) -> ( A .o B ) e. C ) ) |
67 |
9 66
|
syl5 |
|- ( ( A e. C /\ B e. C ) -> ( C e. 3o -> ( A .o B ) e. C ) ) |
68 |
|
olc |
|- ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) |
69 |
|
omcl2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |
70 |
68 69
|
sylan2 |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) |
71 |
70
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) |
72 |
67 71
|
jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C e. 3o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) ) |
73 |
72
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C e. 3o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |