| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eltpi |  |-  ( C e. { (/) , 1o , 2o } -> ( C = (/) \/ C = 1o \/ C = 2o ) ) | 
						
							| 2 |  | df-3o |  |-  3o = suc 2o | 
						
							| 3 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 4 | 3 | uneq1i |  |-  ( 2o u. { 2o } ) = ( { (/) , 1o } u. { 2o } ) | 
						
							| 5 |  | df-suc |  |-  suc 2o = ( 2o u. { 2o } ) | 
						
							| 6 |  | df-tp |  |-  { (/) , 1o , 2o } = ( { (/) , 1o } u. { 2o } ) | 
						
							| 7 | 4 5 6 | 3eqtr4i |  |-  suc 2o = { (/) , 1o , 2o } | 
						
							| 8 | 2 7 | eqtri |  |-  3o = { (/) , 1o , 2o } | 
						
							| 9 | 1 8 | eleq2s |  |-  ( C e. 3o -> ( C = (/) \/ C = 1o \/ C = 2o ) ) | 
						
							| 10 |  | orc |  |-  ( C = (/) -> ( C = (/) \/ ( C = ( _om ^o ( _om ^o C ) ) /\ C e. On ) ) ) | 
						
							| 11 |  | omcl2 |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o C ) ) /\ C e. On ) ) ) -> ( A .o B ) e. C ) | 
						
							| 12 | 10 11 | sylan2 |  |-  ( ( ( A e. C /\ B e. C ) /\ C = (/) ) -> ( A .o B ) e. C ) | 
						
							| 13 | 12 | ex |  |-  ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A .o B ) e. C ) ) | 
						
							| 14 |  | el1o |  |-  ( A e. 1o <-> A = (/) ) | 
						
							| 15 |  | el1o |  |-  ( B e. 1o <-> B = (/) ) | 
						
							| 16 |  | oveq12 |  |-  ( ( A = (/) /\ B = (/) ) -> ( A .o B ) = ( (/) .o (/) ) ) | 
						
							| 17 |  | 0elon |  |-  (/) e. On | 
						
							| 18 |  | om0 |  |-  ( (/) e. On -> ( (/) .o (/) ) = (/) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( (/) .o (/) ) = (/) | 
						
							| 20 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 21 | 19 20 | eqeltri |  |-  ( (/) .o (/) ) e. 1o | 
						
							| 22 | 16 21 | eqeltrdi |  |-  ( ( A = (/) /\ B = (/) ) -> ( A .o B ) e. 1o ) | 
						
							| 23 | 14 15 22 | syl2anb |  |-  ( ( A e. 1o /\ B e. 1o ) -> ( A .o B ) e. 1o ) | 
						
							| 24 | 23 | a1i |  |-  ( C = 1o -> ( ( A e. 1o /\ B e. 1o ) -> ( A .o B ) e. 1o ) ) | 
						
							| 25 |  | eleq2 |  |-  ( C = 1o -> ( A e. C <-> A e. 1o ) ) | 
						
							| 26 |  | eleq2 |  |-  ( C = 1o -> ( B e. C <-> B e. 1o ) ) | 
						
							| 27 | 25 26 | anbi12d |  |-  ( C = 1o -> ( ( A e. C /\ B e. C ) <-> ( A e. 1o /\ B e. 1o ) ) ) | 
						
							| 28 |  | eleq2 |  |-  ( C = 1o -> ( ( A .o B ) e. C <-> ( A .o B ) e. 1o ) ) | 
						
							| 29 | 24 27 28 | 3imtr4d |  |-  ( C = 1o -> ( ( A e. C /\ B e. C ) -> ( A .o B ) e. C ) ) | 
						
							| 30 | 29 | com12 |  |-  ( ( A e. C /\ B e. C ) -> ( C = 1o -> ( A .o B ) e. C ) ) | 
						
							| 31 |  | elpri |  |-  ( A e. { (/) , 1o } -> ( A = (/) \/ A = 1o ) ) | 
						
							| 32 | 31 3 | eleq2s |  |-  ( A e. 2o -> ( A = (/) \/ A = 1o ) ) | 
						
							| 33 |  | elpri |  |-  ( B e. { (/) , 1o } -> ( B = (/) \/ B = 1o ) ) | 
						
							| 34 | 33 3 | eleq2s |  |-  ( B e. 2o -> ( B = (/) \/ B = 1o ) ) | 
						
							| 35 |  | 0ex |  |-  (/) e. _V | 
						
							| 36 | 35 | prid1 |  |-  (/) e. { (/) , 1o } | 
						
							| 37 | 36 19 3 | 3eltr4i |  |-  ( (/) .o (/) ) e. 2o | 
						
							| 38 | 16 37 | eqeltrdi |  |-  ( ( A = (/) /\ B = (/) ) -> ( A .o B ) e. 2o ) | 
						
							| 39 |  | oveq12 |  |-  ( ( A = 1o /\ B = (/) ) -> ( A .o B ) = ( 1o .o (/) ) ) | 
						
							| 40 |  | 1on |  |-  1o e. On | 
						
							| 41 |  | om0 |  |-  ( 1o e. On -> ( 1o .o (/) ) = (/) ) | 
						
							| 42 | 40 41 | ax-mp |  |-  ( 1o .o (/) ) = (/) | 
						
							| 43 | 36 42 3 | 3eltr4i |  |-  ( 1o .o (/) ) e. 2o | 
						
							| 44 | 39 43 | eqeltrdi |  |-  ( ( A = 1o /\ B = (/) ) -> ( A .o B ) e. 2o ) | 
						
							| 45 |  | oveq12 |  |-  ( ( A = (/) /\ B = 1o ) -> ( A .o B ) = ( (/) .o 1o ) ) | 
						
							| 46 |  | om0r |  |-  ( 1o e. On -> ( (/) .o 1o ) = (/) ) | 
						
							| 47 | 40 46 | ax-mp |  |-  ( (/) .o 1o ) = (/) | 
						
							| 48 | 36 47 3 | 3eltr4i |  |-  ( (/) .o 1o ) e. 2o | 
						
							| 49 | 45 48 | eqeltrdi |  |-  ( ( A = (/) /\ B = 1o ) -> ( A .o B ) e. 2o ) | 
						
							| 50 |  | oveq12 |  |-  ( ( A = 1o /\ B = 1o ) -> ( A .o B ) = ( 1o .o 1o ) ) | 
						
							| 51 |  | 1oex |  |-  1o e. _V | 
						
							| 52 | 51 | prid2 |  |-  1o e. { (/) , 1o } | 
						
							| 53 |  | om1 |  |-  ( 1o e. On -> ( 1o .o 1o ) = 1o ) | 
						
							| 54 | 40 53 | ax-mp |  |-  ( 1o .o 1o ) = 1o | 
						
							| 55 | 52 54 3 | 3eltr4i |  |-  ( 1o .o 1o ) e. 2o | 
						
							| 56 | 50 55 | eqeltrdi |  |-  ( ( A = 1o /\ B = 1o ) -> ( A .o B ) e. 2o ) | 
						
							| 57 | 38 44 49 56 | ccase |  |-  ( ( ( A = (/) \/ A = 1o ) /\ ( B = (/) \/ B = 1o ) ) -> ( A .o B ) e. 2o ) | 
						
							| 58 | 32 34 57 | syl2an |  |-  ( ( A e. 2o /\ B e. 2o ) -> ( A .o B ) e. 2o ) | 
						
							| 59 | 58 | a1i |  |-  ( C = 2o -> ( ( A e. 2o /\ B e. 2o ) -> ( A .o B ) e. 2o ) ) | 
						
							| 60 |  | eleq2 |  |-  ( C = 2o -> ( A e. C <-> A e. 2o ) ) | 
						
							| 61 |  | eleq2 |  |-  ( C = 2o -> ( B e. C <-> B e. 2o ) ) | 
						
							| 62 | 60 61 | anbi12d |  |-  ( C = 2o -> ( ( A e. C /\ B e. C ) <-> ( A e. 2o /\ B e. 2o ) ) ) | 
						
							| 63 |  | eleq2 |  |-  ( C = 2o -> ( ( A .o B ) e. C <-> ( A .o B ) e. 2o ) ) | 
						
							| 64 | 59 62 63 | 3imtr4d |  |-  ( C = 2o -> ( ( A e. C /\ B e. C ) -> ( A .o B ) e. C ) ) | 
						
							| 65 | 64 | com12 |  |-  ( ( A e. C /\ B e. C ) -> ( C = 2o -> ( A .o B ) e. C ) ) | 
						
							| 66 | 13 30 65 | 3jaod |  |-  ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ C = 1o \/ C = 2o ) -> ( A .o B ) e. C ) ) | 
						
							| 67 | 9 66 | syl5 |  |-  ( ( A e. C /\ B e. C ) -> ( C e. 3o -> ( A .o B ) e. C ) ) | 
						
							| 68 |  | olc |  |-  ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) | 
						
							| 69 |  | omcl2 |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) | 
						
							| 70 | 68 69 | sylan2 |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) | 
						
							| 71 | 70 | ex |  |-  ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) -> ( A .o B ) e. C ) ) | 
						
							| 72 | 67 71 | jaod |  |-  ( ( A e. C /\ B e. C ) -> ( ( C e. 3o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) -> ( A .o B ) e. C ) ) | 
						
							| 73 | 72 | imp |  |-  ( ( ( A e. C /\ B e. C ) /\ ( C e. 3o \/ ( C = ( _om ^o ( _om ^o D ) ) /\ D e. On ) ) ) -> ( A .o B ) e. C ) |