Step |
Hyp |
Ref |
Expression |
1 |
|
sspss |
|- ( A C_ suc B <-> ( A C. suc B \/ A = suc B ) ) |
2 |
|
ordsssuc |
|- ( ( A e. On /\ Ord B ) -> ( A C_ B <-> A e. suc B ) ) |
3 |
|
eloni |
|- ( A e. On -> Ord A ) |
4 |
|
ordsuci |
|- ( Ord B -> Ord suc B ) |
5 |
|
ordelpss |
|- ( ( Ord A /\ Ord suc B ) -> ( A e. suc B <-> A C. suc B ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( A e. On /\ Ord B ) -> ( A e. suc B <-> A C. suc B ) ) |
7 |
2 6
|
bitrd |
|- ( ( A e. On /\ Ord B ) -> ( A C_ B <-> A C. suc B ) ) |
8 |
7
|
orbi1d |
|- ( ( A e. On /\ Ord B ) -> ( ( A C_ B \/ A = suc B ) <-> ( A C. suc B \/ A = suc B ) ) ) |
9 |
1 8
|
bitr4id |
|- ( ( A e. On /\ Ord B ) -> ( A C_ suc B <-> ( A C_ B \/ A = suc B ) ) ) |