Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ordsssuc | |- ( ( A e. On /\ Ord B ) -> ( A C_ B <-> A e. suc B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |- ( A e. On -> Ord A ) |
|
2 | ordsseleq | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. On /\ Ord B ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
4 | elsucg | |- ( A e. On -> ( A e. suc B <-> ( A e. B \/ A = B ) ) ) |
|
5 | 4 | adantr | |- ( ( A e. On /\ Ord B ) -> ( A e. suc B <-> ( A e. B \/ A = B ) ) ) |
6 | 3 5 | bitr4d | |- ( ( A e. On /\ Ord B ) -> ( A C_ B <-> A e. suc B ) ) |