Metamath Proof Explorer


Theorem ordsssuc

Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordsssuc
|- ( ( A e. On /\ Ord B ) -> ( A C_ B <-> A e. suc B ) )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( A e. On -> Ord A )
2 ordsseleq
 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) )
3 1 2 sylan
 |-  ( ( A e. On /\ Ord B ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) )
4 elsucg
 |-  ( A e. On -> ( A e. suc B <-> ( A e. B \/ A = B ) ) )
5 4 adantr
 |-  ( ( A e. On /\ Ord B ) -> ( A e. suc B <-> ( A e. B \/ A = B ) ) )
6 3 5 bitr4d
 |-  ( ( A e. On /\ Ord B ) -> ( A C_ B <-> A e. suc B ) )