Metamath Proof Explorer


Theorem ordsssucb

Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim , limsssuc . (Contributed by RP, 22-Feb-2025)

Ref Expression
Assertion ordsssucb AOnOrdBAsucBABA=sucB

Proof

Step Hyp Ref Expression
1 sspss AsucBAsucBA=sucB
2 ordsssuc AOnOrdBABAsucB
3 eloni AOnOrdA
4 ordsuci OrdBOrdsucB
5 ordelpss OrdAOrdsucBAsucBAsucB
6 3 4 5 syl2an AOnOrdBAsucBAsucB
7 2 6 bitrd AOnOrdBABAsucB
8 7 orbi1d AOnOrdBABA=sucBAsucBA=sucB
9 1 8 bitr4id AOnOrdBAsucBABA=sucB