Step |
Hyp |
Ref |
Expression |
1 |
|
sspss |
⊢ ( 𝐴 ⊆ suc 𝐵 ↔ ( 𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵 ) ) |
2 |
|
ordsssuc |
⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
3 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
4 |
|
ordsuci |
⊢ ( Ord 𝐵 → Ord suc 𝐵 ) |
5 |
|
ordelpss |
⊢ ( ( Ord 𝐴 ∧ Ord suc 𝐵 ) → ( 𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵 ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵 ) ) |
7 |
2 6
|
bitrd |
⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊊ suc 𝐵 ) ) |
8 |
7
|
orbi1d |
⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( ( 𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵 ) ↔ ( 𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵 ) ) ) |
9 |
1 8
|
bitr4id |
⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ⊆ suc 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵 ) ) ) |