Step |
Hyp |
Ref |
Expression |
1 |
|
eltpi |
⊢ ( 𝐶 ∈ { ∅ , 1o , 2o } → ( 𝐶 = ∅ ∨ 𝐶 = 1o ∨ 𝐶 = 2o ) ) |
2 |
|
df-3o |
⊢ 3o = suc 2o |
3 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
4 |
3
|
uneq1i |
⊢ ( 2o ∪ { 2o } ) = ( { ∅ , 1o } ∪ { 2o } ) |
5 |
|
df-suc |
⊢ suc 2o = ( 2o ∪ { 2o } ) |
6 |
|
df-tp |
⊢ { ∅ , 1o , 2o } = ( { ∅ , 1o } ∪ { 2o } ) |
7 |
4 5 6
|
3eqtr4i |
⊢ suc 2o = { ∅ , 1o , 2o } |
8 |
2 7
|
eqtri |
⊢ 3o = { ∅ , 1o , 2o } |
9 |
1 8
|
eleq2s |
⊢ ( 𝐶 ∈ 3o → ( 𝐶 = ∅ ∨ 𝐶 = 1o ∨ 𝐶 = 2o ) ) |
10 |
|
orc |
⊢ ( 𝐶 = ∅ → ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ) |
11 |
|
omcl2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐶 ) ) ∧ 𝐶 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
12 |
10 11
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐶 = ∅ ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
13 |
12
|
ex |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 = ∅ → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
14 |
|
el1o |
⊢ ( 𝐴 ∈ 1o ↔ 𝐴 = ∅ ) |
15 |
|
el1o |
⊢ ( 𝐵 ∈ 1o ↔ 𝐵 = ∅ ) |
16 |
|
oveq12 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o ∅ ) ) |
17 |
|
0elon |
⊢ ∅ ∈ On |
18 |
|
om0 |
⊢ ( ∅ ∈ On → ( ∅ ·o ∅ ) = ∅ ) |
19 |
17 18
|
ax-mp |
⊢ ( ∅ ·o ∅ ) = ∅ |
20 |
|
0lt1o |
⊢ ∅ ∈ 1o |
21 |
19 20
|
eqeltri |
⊢ ( ∅ ·o ∅ ) ∈ 1o |
22 |
16 21
|
eqeltrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) ∈ 1o ) |
23 |
14 15 22
|
syl2anb |
⊢ ( ( 𝐴 ∈ 1o ∧ 𝐵 ∈ 1o ) → ( 𝐴 ·o 𝐵 ) ∈ 1o ) |
24 |
23
|
a1i |
⊢ ( 𝐶 = 1o → ( ( 𝐴 ∈ 1o ∧ 𝐵 ∈ 1o ) → ( 𝐴 ·o 𝐵 ) ∈ 1o ) ) |
25 |
|
eleq2 |
⊢ ( 𝐶 = 1o → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 1o ) ) |
26 |
|
eleq2 |
⊢ ( 𝐶 = 1o → ( 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 1o ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝐶 = 1o → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 1o ∧ 𝐵 ∈ 1o ) ) ) |
28 |
|
eleq2 |
⊢ ( 𝐶 = 1o → ( ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ·o 𝐵 ) ∈ 1o ) ) |
29 |
24 27 28
|
3imtr4d |
⊢ ( 𝐶 = 1o → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
30 |
29
|
com12 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 = 1o → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
31 |
|
elpri |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) |
32 |
31 3
|
eleq2s |
⊢ ( 𝐴 ∈ 2o → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) |
33 |
|
elpri |
⊢ ( 𝐵 ∈ { ∅ , 1o } → ( 𝐵 = ∅ ∨ 𝐵 = 1o ) ) |
34 |
33 3
|
eleq2s |
⊢ ( 𝐵 ∈ 2o → ( 𝐵 = ∅ ∨ 𝐵 = 1o ) ) |
35 |
|
0ex |
⊢ ∅ ∈ V |
36 |
35
|
prid1 |
⊢ ∅ ∈ { ∅ , 1o } |
37 |
36 19 3
|
3eltr4i |
⊢ ( ∅ ·o ∅ ) ∈ 2o |
38 |
16 37
|
eqeltrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) |
39 |
|
oveq12 |
⊢ ( ( 𝐴 = 1o ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ( 1o ·o ∅ ) ) |
40 |
|
1on |
⊢ 1o ∈ On |
41 |
|
om0 |
⊢ ( 1o ∈ On → ( 1o ·o ∅ ) = ∅ ) |
42 |
40 41
|
ax-mp |
⊢ ( 1o ·o ∅ ) = ∅ |
43 |
36 42 3
|
3eltr4i |
⊢ ( 1o ·o ∅ ) ∈ 2o |
44 |
39 43
|
eqeltrdi |
⊢ ( ( 𝐴 = 1o ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) |
45 |
|
oveq12 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = 1o ) → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 1o ) ) |
46 |
|
om0r |
⊢ ( 1o ∈ On → ( ∅ ·o 1o ) = ∅ ) |
47 |
40 46
|
ax-mp |
⊢ ( ∅ ·o 1o ) = ∅ |
48 |
36 47 3
|
3eltr4i |
⊢ ( ∅ ·o 1o ) ∈ 2o |
49 |
45 48
|
eqeltrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = 1o ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) |
50 |
|
oveq12 |
⊢ ( ( 𝐴 = 1o ∧ 𝐵 = 1o ) → ( 𝐴 ·o 𝐵 ) = ( 1o ·o 1o ) ) |
51 |
|
1oex |
⊢ 1o ∈ V |
52 |
51
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
53 |
|
om1 |
⊢ ( 1o ∈ On → ( 1o ·o 1o ) = 1o ) |
54 |
40 53
|
ax-mp |
⊢ ( 1o ·o 1o ) = 1o |
55 |
52 54 3
|
3eltr4i |
⊢ ( 1o ·o 1o ) ∈ 2o |
56 |
50 55
|
eqeltrdi |
⊢ ( ( 𝐴 = 1o ∧ 𝐵 = 1o ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) |
57 |
38 44 49 56
|
ccase |
⊢ ( ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ∧ ( 𝐵 = ∅ ∨ 𝐵 = 1o ) ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) |
58 |
32 34 57
|
syl2an |
⊢ ( ( 𝐴 ∈ 2o ∧ 𝐵 ∈ 2o ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) |
59 |
58
|
a1i |
⊢ ( 𝐶 = 2o → ( ( 𝐴 ∈ 2o ∧ 𝐵 ∈ 2o ) → ( 𝐴 ·o 𝐵 ) ∈ 2o ) ) |
60 |
|
eleq2 |
⊢ ( 𝐶 = 2o → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 2o ) ) |
61 |
|
eleq2 |
⊢ ( 𝐶 = 2o → ( 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 2o ) ) |
62 |
60 61
|
anbi12d |
⊢ ( 𝐶 = 2o → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 2o ∧ 𝐵 ∈ 2o ) ) ) |
63 |
|
eleq2 |
⊢ ( 𝐶 = 2o → ( ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ·o 𝐵 ) ∈ 2o ) ) |
64 |
59 62 63
|
3imtr4d |
⊢ ( 𝐶 = 2o → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
65 |
64
|
com12 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 = 2o → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
66 |
13 30 65
|
3jaod |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ∅ ∨ 𝐶 = 1o ∨ 𝐶 = 2o ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
67 |
9 66
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 ∈ 3o → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
68 |
|
olc |
⊢ ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) |
69 |
|
omcl2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
70 |
68 69
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |
71 |
70
|
ex |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
72 |
67 71
|
jaod |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 ∈ 3o ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) ) |
73 |
72
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 ∈ 3o ∨ ( 𝐶 = ( ω ↑o ( ω ↑o 𝐷 ) ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 ·o 𝐵 ) ∈ 𝐶 ) |