Metamath Proof Explorer


Theorem omcl3g

Description: Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025)

Ref Expression
Assertion omcl3g A C B C C 3 𝑜 C = ω 𝑜 ω 𝑜 D D On A 𝑜 B C

Proof

Step Hyp Ref Expression
1 eltpi C 1 𝑜 2 𝑜 C = C = 1 𝑜 C = 2 𝑜
2 df-3o 3 𝑜 = suc 2 𝑜
3 df2o3 2 𝑜 = 1 𝑜
4 3 uneq1i 2 𝑜 2 𝑜 = 1 𝑜 2 𝑜
5 df-suc suc 2 𝑜 = 2 𝑜 2 𝑜
6 df-tp 1 𝑜 2 𝑜 = 1 𝑜 2 𝑜
7 4 5 6 3eqtr4i suc 2 𝑜 = 1 𝑜 2 𝑜
8 2 7 eqtri 3 𝑜 = 1 𝑜 2 𝑜
9 1 8 eleq2s C 3 𝑜 C = C = 1 𝑜 C = 2 𝑜
10 orc C = C = C = ω 𝑜 ω 𝑜 C C On
11 omcl2 A C B C C = C = ω 𝑜 ω 𝑜 C C On A 𝑜 B C
12 10 11 sylan2 A C B C C = A 𝑜 B C
13 12 ex A C B C C = A 𝑜 B C
14 el1o A 1 𝑜 A =
15 el1o B 1 𝑜 B =
16 oveq12 A = B = A 𝑜 B = 𝑜
17 0elon On
18 om0 On 𝑜 =
19 17 18 ax-mp 𝑜 =
20 0lt1o 1 𝑜
21 19 20 eqeltri 𝑜 1 𝑜
22 16 21 eqeltrdi A = B = A 𝑜 B 1 𝑜
23 14 15 22 syl2anb A 1 𝑜 B 1 𝑜 A 𝑜 B 1 𝑜
24 23 a1i C = 1 𝑜 A 1 𝑜 B 1 𝑜 A 𝑜 B 1 𝑜
25 eleq2 C = 1 𝑜 A C A 1 𝑜
26 eleq2 C = 1 𝑜 B C B 1 𝑜
27 25 26 anbi12d C = 1 𝑜 A C B C A 1 𝑜 B 1 𝑜
28 eleq2 C = 1 𝑜 A 𝑜 B C A 𝑜 B 1 𝑜
29 24 27 28 3imtr4d C = 1 𝑜 A C B C A 𝑜 B C
30 29 com12 A C B C C = 1 𝑜 A 𝑜 B C
31 elpri A 1 𝑜 A = A = 1 𝑜
32 31 3 eleq2s A 2 𝑜 A = A = 1 𝑜
33 elpri B 1 𝑜 B = B = 1 𝑜
34 33 3 eleq2s B 2 𝑜 B = B = 1 𝑜
35 0ex V
36 35 prid1 1 𝑜
37 36 19 3 3eltr4i 𝑜 2 𝑜
38 16 37 eqeltrdi A = B = A 𝑜 B 2 𝑜
39 oveq12 A = 1 𝑜 B = A 𝑜 B = 1 𝑜 𝑜
40 1on 1 𝑜 On
41 om0 1 𝑜 On 1 𝑜 𝑜 =
42 40 41 ax-mp 1 𝑜 𝑜 =
43 36 42 3 3eltr4i 1 𝑜 𝑜 2 𝑜
44 39 43 eqeltrdi A = 1 𝑜 B = A 𝑜 B 2 𝑜
45 oveq12 A = B = 1 𝑜 A 𝑜 B = 𝑜 1 𝑜
46 om0r 1 𝑜 On 𝑜 1 𝑜 =
47 40 46 ax-mp 𝑜 1 𝑜 =
48 36 47 3 3eltr4i 𝑜 1 𝑜 2 𝑜
49 45 48 eqeltrdi A = B = 1 𝑜 A 𝑜 B 2 𝑜
50 oveq12 A = 1 𝑜 B = 1 𝑜 A 𝑜 B = 1 𝑜 𝑜 1 𝑜
51 1oex 1 𝑜 V
52 51 prid2 1 𝑜 1 𝑜
53 om1 1 𝑜 On 1 𝑜 𝑜 1 𝑜 = 1 𝑜
54 40 53 ax-mp 1 𝑜 𝑜 1 𝑜 = 1 𝑜
55 52 54 3 3eltr4i 1 𝑜 𝑜 1 𝑜 2 𝑜
56 50 55 eqeltrdi A = 1 𝑜 B = 1 𝑜 A 𝑜 B 2 𝑜
57 38 44 49 56 ccase A = A = 1 𝑜 B = B = 1 𝑜 A 𝑜 B 2 𝑜
58 32 34 57 syl2an A 2 𝑜 B 2 𝑜 A 𝑜 B 2 𝑜
59 58 a1i C = 2 𝑜 A 2 𝑜 B 2 𝑜 A 𝑜 B 2 𝑜
60 eleq2 C = 2 𝑜 A C A 2 𝑜
61 eleq2 C = 2 𝑜 B C B 2 𝑜
62 60 61 anbi12d C = 2 𝑜 A C B C A 2 𝑜 B 2 𝑜
63 eleq2 C = 2 𝑜 A 𝑜 B C A 𝑜 B 2 𝑜
64 59 62 63 3imtr4d C = 2 𝑜 A C B C A 𝑜 B C
65 64 com12 A C B C C = 2 𝑜 A 𝑜 B C
66 13 30 65 3jaod A C B C C = C = 1 𝑜 C = 2 𝑜 A 𝑜 B C
67 9 66 syl5 A C B C C 3 𝑜 A 𝑜 B C
68 olc C = ω 𝑜 ω 𝑜 D D On C = C = ω 𝑜 ω 𝑜 D D On
69 omcl2 A C B C C = C = ω 𝑜 ω 𝑜 D D On A 𝑜 B C
70 68 69 sylan2 A C B C C = ω 𝑜 ω 𝑜 D D On A 𝑜 B C
71 70 ex A C B C C = ω 𝑜 ω 𝑜 D D On A 𝑜 B C
72 67 71 jaod A C B C C 3 𝑜 C = ω 𝑜 ω 𝑜 D D On A 𝑜 B C
73 72 imp A C B C C 3 𝑜 C = ω 𝑜 ω 𝑜 D D On A 𝑜 B C