Metamath Proof Explorer


Theorem 3syld

Description: Triple syllogism deduction. Deduction associated with 3syld . (Contributed by Jeff Hankins, 4-Aug-2009)

Ref Expression
Hypotheses 3syld.1 ( 𝜑 → ( 𝜓𝜒 ) )
3syld.2 ( 𝜑 → ( 𝜒𝜃 ) )
3syld.3 ( 𝜑 → ( 𝜃𝜏 ) )
Assertion 3syld ( 𝜑 → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 3syld.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 3syld.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 3syld.3 ( 𝜑 → ( 𝜃𝜏 ) )
4 1 2 syld ( 𝜑 → ( 𝜓𝜃 ) )
5 4 3 syld ( 𝜑 → ( 𝜓𝜏 ) )