Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝐶 = ∅ → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ ∅ ) ) |
2 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
3 |
2
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) |
4 |
1 3
|
syl6bi |
⊢ ( 𝐶 = ∅ → ( 𝐴 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
5 |
4
|
com12 |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐶 = ∅ → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 = ∅ → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
8 |
|
simpl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 = ( ω ↑o 𝐷 ) ) |
9 |
|
simpr |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐷 ∈ On ) |
10 |
|
omelon |
⊢ ω ∈ On |
11 |
9 10
|
jctil |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ∈ On ∧ 𝐷 ∈ On ) ) |
12 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
14 |
8 13
|
eqeltrd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 ∈ On ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On ) |
16 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ On ) |
17 |
16
|
expcom |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
20 |
15 19
|
jcai |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ) |
21 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ 𝐶 ) |
23 |
|
oaordi |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
24 |
20 22 23
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) |
25 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +o 𝐶 ) = ( 𝐴 +o 𝐶 ) ) |
26 |
25
|
eliuni |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) → ( 𝐴 +o 𝐵 ) ∈ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
27 |
7 24 26
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
28 |
|
simpr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
29 |
8
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝐶 = ( ω ↑o 𝐷 ) ) |
30 |
28 29
|
eleqtrd |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ω ↑o 𝐷 ) ) |
31 |
14
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝐶 ∈ On ) |
32 |
8
|
eqcomd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) = 𝐶 ) |
33 |
|
ssid |
⊢ 𝐶 ⊆ 𝐶 |
34 |
32 33
|
eqsstrdi |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ⊆ 𝐶 ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( ω ↑o 𝐷 ) ⊆ 𝐶 ) |
36 |
|
oaabs2 |
⊢ ( ( ( 𝑥 ∈ ( ω ↑o 𝐷 ) ∧ 𝐶 ∈ On ) ∧ ( ω ↑o 𝐷 ) ⊆ 𝐶 ) → ( 𝑥 +o 𝐶 ) = 𝐶 ) |
37 |
30 31 35 36
|
syl21anc |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 +o 𝐶 ) = 𝐶 ) |
38 |
37 33
|
eqsstrdi |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 +o 𝐶 ) ⊆ 𝐶 ) |
39 |
38
|
iunssd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ⊆ 𝐶 ) |
40 |
|
peano1 |
⊢ ∅ ∈ ω |
41 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
42 |
11 40 41
|
sylancl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
43 |
42 32
|
eleqtrd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∅ ∈ 𝐶 ) |
44 |
|
simpr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ ) |
45 |
44
|
oveq1d |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( 𝑥 +o 𝐶 ) = ( ∅ +o 𝐶 ) ) |
46 |
|
oa0r |
⊢ ( 𝐶 ∈ On → ( ∅ +o 𝐶 ) = 𝐶 ) |
47 |
14 46
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ∅ +o 𝐶 ) = 𝐶 ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( ∅ +o 𝐶 ) = 𝐶 ) |
49 |
45 48
|
eqtrd |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( 𝑥 +o 𝐶 ) = 𝐶 ) |
50 |
49
|
sseq2d |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( 𝐶 ⊆ ( 𝑥 +o 𝐶 ) ↔ 𝐶 ⊆ 𝐶 ) ) |
51 |
|
ssidd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 ⊆ 𝐶 ) |
52 |
43 50 51
|
rspcedvd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∃ 𝑥 ∈ 𝐶 𝐶 ⊆ ( 𝑥 +o 𝐶 ) ) |
53 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐶 𝐶 ⊆ ( 𝑥 +o 𝐶 ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
54 |
52 53
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
55 |
39 54
|
eqssd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) = 𝐶 ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) = 𝐶 ) |
57 |
27 56
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) |
58 |
57
|
ex |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
59 |
6 58
|
jaod |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
60 |
59
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) |