| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( 𝐶 = ∅ → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ ∅ ) ) |
| 2 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
| 3 |
2
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) |
| 4 |
1 3
|
biimtrdi |
⊢ ( 𝐶 = ∅ → ( 𝐴 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
| 5 |
4
|
com12 |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐶 = ∅ → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 = ∅ → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
| 8 |
|
simpl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 = ( ω ↑o 𝐷 ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐷 ∈ On ) |
| 10 |
|
omelon |
⊢ ω ∈ On |
| 11 |
9 10
|
jctil |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ∈ On ∧ 𝐷 ∈ On ) ) |
| 12 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
| 14 |
8 13
|
eqeltrd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 ∈ On ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On ) |
| 16 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ On ) |
| 17 |
16
|
expcom |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On → 𝐴 ∈ On ) ) |
| 20 |
15 19
|
jcai |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ 𝐶 ) |
| 23 |
|
oaordi |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
| 24 |
20 22 23
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +o 𝐶 ) = ( 𝐴 +o 𝐶 ) ) |
| 26 |
25
|
eliuni |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) → ( 𝐴 +o 𝐵 ) ∈ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
| 27 |
7 24 26
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
| 28 |
|
simpr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
| 29 |
8
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝐶 = ( ω ↑o 𝐷 ) ) |
| 30 |
28 29
|
eleqtrd |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ω ↑o 𝐷 ) ) |
| 31 |
14
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → 𝐶 ∈ On ) |
| 32 |
8
|
eqcomd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) = 𝐶 ) |
| 33 |
|
ssid |
⊢ 𝐶 ⊆ 𝐶 |
| 34 |
32 33
|
eqsstrdi |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ⊆ 𝐶 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( ω ↑o 𝐷 ) ⊆ 𝐶 ) |
| 36 |
|
oaabs2 |
⊢ ( ( ( 𝑥 ∈ ( ω ↑o 𝐷 ) ∧ 𝐶 ∈ On ) ∧ ( ω ↑o 𝐷 ) ⊆ 𝐶 ) → ( 𝑥 +o 𝐶 ) = 𝐶 ) |
| 37 |
30 31 35 36
|
syl21anc |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 +o 𝐶 ) = 𝐶 ) |
| 38 |
37 33
|
eqsstrdi |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 +o 𝐶 ) ⊆ 𝐶 ) |
| 39 |
38
|
iunssd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ⊆ 𝐶 ) |
| 40 |
|
peano1 |
⊢ ∅ ∈ ω |
| 41 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
| 42 |
11 40 41
|
sylancl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
| 43 |
42 32
|
eleqtrd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∅ ∈ 𝐶 ) |
| 44 |
|
simpr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → 𝑥 = ∅ ) |
| 45 |
44
|
oveq1d |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( 𝑥 +o 𝐶 ) = ( ∅ +o 𝐶 ) ) |
| 46 |
|
oa0r |
⊢ ( 𝐶 ∈ On → ( ∅ +o 𝐶 ) = 𝐶 ) |
| 47 |
14 46
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( ∅ +o 𝐶 ) = 𝐶 ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( ∅ +o 𝐶 ) = 𝐶 ) |
| 49 |
45 48
|
eqtrd |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( 𝑥 +o 𝐶 ) = 𝐶 ) |
| 50 |
49
|
sseq2d |
⊢ ( ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ∧ 𝑥 = ∅ ) → ( 𝐶 ⊆ ( 𝑥 +o 𝐶 ) ↔ 𝐶 ⊆ 𝐶 ) ) |
| 51 |
|
ssidd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 ⊆ 𝐶 ) |
| 52 |
43 50 51
|
rspcedvd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∃ 𝑥 ∈ 𝐶 𝐶 ⊆ ( 𝑥 +o 𝐶 ) ) |
| 53 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐶 𝐶 ⊆ ( 𝑥 +o 𝐶 ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) ) |
| 55 |
39 54
|
eqssd |
⊢ ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) = 𝐶 ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ∪ 𝑥 ∈ 𝐶 ( 𝑥 +o 𝐶 ) = 𝐶 ) |
| 57 |
27 56
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) |
| 58 |
57
|
ex |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
| 59 |
6 58
|
jaod |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ ( 𝐶 = ∅ ∨ ( 𝐶 = ( ω ↑o 𝐷 ) ∧ 𝐷 ∈ On ) ) ) → ( 𝐴 +o 𝐵 ) ∈ 𝐶 ) |